На страницах этого форума публикуются материалы предназначенные для ищущих новые пути в устранение проблем не решаемых современным обществом.
Форум не имеет целью популяризации чьих либо идей. Форум предназначен для понимания этих идей и ответа на важнейшие вопросы человеческого бытия.
Закон Вселенной - "прежде чем получить сначала отдай!" - ссылки видят зарегистрированные участники форума.

Свойства бактерий

Аюрведа и другие методики. Индивидуальный подбор питания.
Аватар пользователя
Ansaraides
Бывалый
Сообщений: 3446
Зарегистрирован: 09 июл 2013, 08:07
Награды: 8
Откуда: Город Святой Марии
Пол: Мужской
:
Замок
Благодарил (а): 1098 раза
Поблагодарили: 2203 раза

Свойства бактерий

Сообщение Ansaraides » 04 апр 2015, 09:35

Все очень просто! По Гиппократу - пища это лекарство. Но не можем же мы постоянно принимать лекарства!
"Есть или не есть и что есть из того, что есть?"
Если ты поднялся на вершину горы и тебе некуда идти - иди дальше!

Нажимайте на значок пальца в верхнем правом углу и спи крепко.

Аватар пользователя
Ansaraides
Бывалый
Сообщений: 3446
Зарегистрирован: 09 июл 2013, 08:07
Награды: 8
Откуда: Город Святой Марии
Пол: Мужской
:
Замок
Благодарил (а): 1098 раза
Поблагодарили: 2203 раза

Свойства бактерий

Сообщение Ansaraides » 04 апр 2015, 09:36

Основная микрофлора корма

Гетероферментативные молочнокислые бактерии

Основная дикая молочнокислая микрофлора. Малочисленна. В общей массе микрофлоры, присутствующей на растениях к моменту закладки, её доля колеблется в диапазоне от 0,01% до 10%. Имеет сниженный коэффициент конверсии углеводов в молочную кислоту, уступая в этом специализированным культурным штаммам. В ходе жизнедеятельности неизбежны потери в среднем 22% сухого вещества углеводов и 16% энергии, а образуемые в ходе брожения побочные вещества могут существенно снизить поедаемость корма. Угнетается повышением осмотического давления в ходе подвяливания, Среди желательных специализированных штаммов можно выделить лишь Lactobacillus bucheri, продуцирующую вещества, обеспечивающие аэробную стабильность корма и не вызывающий потерь сухого вещества и энергии.

Гомоферментативные молочнокислые бактерии

В диком виде очень малочисленны. Являются главными компонентами всёх инокулянтов. Обеспечивают интенсивное сбраживание углеводов корма с образованием преимущественно молочной кислоты без потери сухого вещества и с минимальными потерями энергии. Штаммы, используемые в инокулянтах как правило устойчивы к повышенному осмотическому давлению и выдерживают интенсивное подвяливание. Наиболее интенсивное кислотообразование обеспечивают Lactobacillus, но для интенсивного развития им необходимо рН ниже 5,0. Pediococcus занимает второе место по интенсивности кислотообразования. Его преимущество - развитие при рН=7,5 и ниже. Наименее эффективны по кислотообразованию: Streptococcccus и Enterococcus.

Клостридии (маслянокислые бактерии)

Спорообразующие бактерии, способные разлагать сахара, органические кислоты и протеины. Общепринятое мнение, что клостридии являются строгими анаэробами, то есть чувствительны к кислороду. Однако ряд новейших исследований продемонстрировал способность клостридий развиваться и в присутствии кислорода (Borreani и др., 2009). Способны продуцировать собственные токсины. Кроме того токсичными являются продукты жизнедеятельности протеолитических штаммов. Обитают в почве и в корма попадают вследствие загрязнения почвой кормовой массы. Являются главной причиной порчи корма в ходе ферментации. Угнетаются снижением рН корма, но не погибают, а переходят в споровое состояние. Риски развития маслянокислого брожения существенно возрастают при повышении температуры корма, при низком содержании сухого вещества, низком содержании сахаров в корме, высоком содержании протеина и высокой буферности. При развитии вторичной ферментации клостридии интенсивно развиваются на кормах с высоким содержанием углеводов. Будучи спорообразующими, являются главными источниками загрязнения молока.

Энтеробактерии

Обширная группа факультативных неспорообразующих анаэробов. Сбраживают сахара до муравьиной и уксусной кислоты, углекислого газа, водорода, этанола. Интенсивно разлагают протеины. В результате разложения энтеробактериями аминокислот в корме накапливаются токсичные биогенные амины. Часть энтеробактерий патогенны. Угнетаются быстрым снижением рН. Попадают в корма из навоза, поэтому технология использования органических удобрений играет решающую роль в начальном титре.

Листерии

Группа бактерий, среди которых наиболее известна Listeria monocytogènes. Факультативные анаэробы. Листерии ингибируются понижением рН. Однако листерии могут выдерживать кислотность до рН=3,8 в случае наличия небольшого количества кислорода в массе корма. Вызывают широкий спектр заболеваний у животных и людей. Прежде всего заболевают животные с ослабленной иммунной системой, стельные животные, новорожденные телята. Листериоз вызывает неврологические расстройства и является причиной 20-30% случаев смертей и абортов. Развивается на почвах с высоким содержанием гумуса. Пики развития приходят на весенний и осенний периоды. Чаще всего листерии выделяли из почвы тех полей, где травы не скашивались несколько лет, поскольку увядшая и разложившаяся трава способствует их размножению.

Бациллы

Спорообразующие аэробы, реже факультативные анаэробы. Способны продуцировать молочную кислоту, но менее эффективно, чем молочнокислые бактерии. Кроме того они продуцируют уксусную и масляную кислоты, этанол, бутандиол, глицерин. Обладая, мощной ферментной системой, Bacillus (ссылка) интенсивно разлагают сахара и протеины корма. В условиях доступа кислорода воздуха способствуют первичному разогреву корма с последующей порчей. Споры Bacillus очень устойчивы в том числе и к высоким температурам и вызывают проблемы при производстве молочных продуктов. Часть штаммов патогенна для человека и животных. Некоторые штаммы способны продуцировать антибиотики. Бациллии устойчивы к низкому рН, поэтому профилактикой является препятствование контаминации корма этой микрофлорой.

Дрожжи

Одноклеточные грибковые микроорганизмы. Факультативные анаэробы. Играют существенную роль в порче корма. Особенно интенсивно развиваются на кормах богатых сахарами и крахмалом. Ответственны за разогрев корма и потери при доступе воздуха при негерметичном хранении и выемке корма. В кислородных условиях дрожжи используют молочную кислоту в качестве субстрата. Разлагая молочную кислоту и смещая тем самым рН корма дрожжи провоцируют развитие вторичной ферментации клостридиями и энтеробактериями. Обладают низкой чувствительностью к кислотности корма. В присутствии кислорода воздуха могут выдерживать кислотность до рН=2,0. Способны расти в широком диапазоне температур от 00С до 450С. Менее чувствительны к повышению осмотического давления в ходе подвяливания, нежели бактерии. Дрожжи угнетаются следующими кислотами в порядке убывания интенсивности: масляной, пропионовой, уксусной. Комбинации кислот более эффективны.

Плесени

Многоклеточные грибковые микроорганизмы. Строгие аэробы, то есть развиваются только в присутствии кислорода воздуха. Могут выдерживать очень высокое осмотическое давление, соответствующее влажности 18-20%. Как и дрожжи, плесени провоцируют разогрев корма с потерей питательности. Обладая мощной ферментной системой могут разлагать угглеводы, в том числе и структурные, а так же молочную кислоту и протеины. Продуцируют микотоксины, снижающие потребление кормов и вызывающие серьезные нарушения процессов обмена веществ у животных. Плесени ингибируются масляной, пропионовой и уксусной кислотами.
Все очень просто! По Гиппократу - пища это лекарство. Но не можем же мы постоянно принимать лекарства!
"Есть или не есть и что есть из того, что есть?"
Если ты поднялся на вершину горы и тебе некуда идти - иди дальше!

Нажимайте на значок пальца в верхнем правом углу и спи крепко.

Аватар пользователя
Ansaraides
Бывалый
Сообщений: 3446
Зарегистрирован: 09 июл 2013, 08:07
Награды: 8
Откуда: Город Святой Марии
Пол: Мужской
:
Замок
Благодарил (а): 1098 раза
Поблагодарили: 2203 раза

Свойства бактерий

Сообщение Ansaraides » 04 апр 2015, 09:50

Заквасочникам: закваска с запахом, как" изо рта"
Закваска с запахом "изо рта"

2614781.jpg
2614781.jpg (48.83 KiB) 641 просмотра


С заквасками-вонючками мне довелось сталкиваться дважды. Обе были не мои. Мои все, кроме пожалуй дезема и калвелевской основной проходили через стадию неприятного тухлого запаха, но потом исправлялись. А вот с готовыми заквасками, которые тошнотворно воняют прогорклым салом или старым мерзким маслом в спелом виде... мне самой таких вывести не удавалось.
[cut]
То есть выглядит это так. Дает тебе человек свою закваску. Ты нюхаешь её спелую, она красавица, идеал здорового теста и пузырчатости, и кислотность и рН в норме, все пучком. А воняет от неё как от трупа. Гнилым мясом. Невыносимо! Я никак не могла понять почему! И что с этим делать.

В первый раз, когда я с этим столкнулась, для меня не было большего авторитета чем Калвель. Так что я провела чужую закваску через строгий режим кормления по Калвелю при 27С. Крутая белая закваска постепенно выправилась и заблагоухала бона фиде сан-франциской. В крутой закваске хорошо накапливается молочная кислота, а она всякую нечисть выживает со свету в заквасках. А поскольку закваска Калвеля белая, и подсоленная то и новых вонючих микроорганизмов с мукой во время кормления много не поступило.

В этот раз, две недели тому назад, я столкнулась с удивительным феноменом - чужая закваска после кормления в течение 6 часов благоухала чисто молочно-кисло, а к моменту достижения ею спелости (целевой кислотности и рН за 12ч при 22С) из банки издавался вызывающий рвоту вонизм. Неприятно - жуть!

Я попыталась провести закваску через пять суток кормления по Нэнси Силвертон. Не помогло!

Это было недавно и я как раз начинала возиться с деземами, так что я решила провести чистку этой закваски в режиме кормления дезема. Т.е. анаэробно и в глубокой почти предельной прохладе давать ей созревать, опять же в крутом виде. Кормила 100з+100м+60в. Как только она удваивалась, снова кормила. И получилось! Закваска выздоровела и проявила свою чудную прелесть в аромате.

Причина вони заквасок, если вы читали последние мои рассказы про дезем, - в маслянокислых бактериях. Они сбраживают сахар и крахмал муки с образованием уксуса и масляной кислоты, имеющий запах гнилья - гнилой картошки, гнилого мяса, прогорклого жира, болота и рвоты.
4004015.jpg
4004015.jpg (27.86 KiB) 641 просмотра



Герой этого рассказа - клостридиум ацетобутиликум - выглядит как теннисная ракетка под микроскопом.

Я не знаю, какова была причина размножения вонючек клостридий в первой закваске, но во второй все объяснялось довольно просто - слишком теплое брожение (32-35СС) сразу после кормления приводили к тому, что в зоне оптимального комфорта бешено размножались клостридии (они любят среду потеплее, 30-40С). Кроме того, если ваша заквасочка пахнет ацетоном , то это скорей всего тоже клостридии. Они выделяют ацетон.
Источник ЖЖ, автор Люда
Все очень просто! По Гиппократу - пища это лекарство. Но не можем же мы постоянно принимать лекарства!
"Есть или не есть и что есть из того, что есть?"
Если ты поднялся на вершину горы и тебе некуда идти - иди дальше!

Нажимайте на значок пальца в верхнем правом углу и спи крепко.

Аватар пользователя
Ansaraides
Бывалый
Сообщений: 3446
Зарегистрирован: 09 июл 2013, 08:07
Награды: 8
Откуда: Город Святой Марии
Пол: Мужской
:
Замок
Благодарил (а): 1098 раза
Поблагодарили: 2203 раза

Свойства бактерий

Сообщение Ansaraides » 03 май 2015, 11:08

Термофильные бактерии

Экологически обособленную группу в природе представляют термофильные микроорганизмы. Температурные условия вызывали в в процессе эволюции появление микробных форм, которые оказались способными развиваться при разных температурах, в том числе и при высокой (50—93 °С).

Видная роль в изучении термофильных микроорганизмов принадлежит А. А. Имшенецкому, Е. Н. Мишустину, Б. Л. Исаченко и др. Эти ученые не ограничились разработкой только теоретической стороны проблемы явления термофилии, и их исследования имели важное практическое значение.

Одна из главных отличительных особенностей термофилов — ускоренный обмен веществ. За последние годы благодаря новейшим методам исследования удалось накопить данные, частично раскрывающие механизмы, при помощи которых клетка защищается от воздействия высокой температуры. Установлено, что наиболее существенные изменения под воздействием высокой температуры претерпевают клеточные белки и липиды, с которыми связаны основные жизненные процессы.

Благодаря высокой скорости роста термофильные микроорганизмы могут найти широкое применение в самых различных отраслях промышленности и сельского хозяйства.

Методы выделения термофильных и мезофиль-ных бактерий в основном сходны. Различие заключается лишь в температуре выращивания. Для того чтобы точно установить оптимальную температуру развития и закрепить ее, культуру необходимо длительно (1 — 2 месяца) пассировать (пересевать) в диапазоне найденного оптимума.
Температурные группы микроорганизмов. Термртолератность и термоустойчивость

Различные микроорганизмы могут развиваться при разных температурах: одни микробы хорошо растут при низких температурах, близких к О °С (+5 °С); другие, наоборот, способны к росту при высоких температурах (около 90 °С). Поэтому микроорганизмы делят по их отношению к температуре на три основные группы— психрофилы, мезофилы и термофилы.

2014973.jpg
2014973.jpg (67.26 KiB) 641 просмотра


Рис. 187. Зависимость от температуры скорости роста психрофильных, мезофильных и термофильных микроорганизмов.

Психрофилы (предпочитающие низкие температуры) — микроорганизмы, имеющие минимальную температуру роста ниже О °С.

Мезофилы (предпочитающие средние температуры) — микроорганизмы, имеющие минимальную температуру роста выше, чем у психрофилов, а максимальную температуру ниже, чем у термофилов. Большинство микроорганизмов — мезофилы, растущие обычно при температурах от 0—10 °С до 40—45 °С.

8794020.jpg
8794020.jpg (20.8 KiB) 641 просмотра


Рис. 188. Группы бактерий по максимальным температурам роста.

Термофилы (предпочитающие высокие температуры) — микроорганизмы с максимальной температурой роста обычно выше 50 °С.

Что же такое минимальная и максимальная температуры роста? Минимальная — это такая пороговая температура, при незначительном снижении которой скорость роста микроорганизма (прирост клеток за 1 ч) близка к нулю, т. е. практически рост прекращается. Максимальная температура — пороговая температура, при незначительном повышении которой скорость роста микроорганизма близка к нулю.

При изучении особенностей каждого нового штамма обязательно определяют и оптимальную температуру, т. е. устанавливают тот температурный диапазон, в котором данный микроорганизм растет с максимальной скоростью. При максимальной скорости роста микроорганизм, естественно, наиболее интенсивно размножается. Поэтому довольно часто скорость роста выражают как число генераций за 1 ч. Английский ученый Т. Д. Брок предложил схему, показывающую зависимость скорости роста (частоты генераций) от температуры для различных температурных групп микроорганизмов (рис. 187).

Внутри группы термофилов различают еще четыре более мелкие подгруппы (рис. 188) — экстремально термофильные микроорганизмы, стенотермофилы, эвритермофилы, термотолерантные микроорганизмы (термотолеранты).

Экстремально термофильные микроорганизмы вовсе не растут при температурах ниже 40—45 °С, оптимальная температурная зона роста — около 80 °С, максимальные температуры близки к 93 °С.

Стенотермофилы характеризуются минимальными температурами роста, равными 37—40 °С, максимальные лежат в области 70— 80 °С, зона оптимальных температур — 55— 65 °С.

Наибольшее количество термофильных микроорганизмов относится к подгруппам эвритер-мофилов и термотолерантов. Эти подгруппы довольно сложно четко охарактеризовать. Особенно трудно отличить термотолерантные штаммы от некоторых мезофилов.

Эвритермофилы имеют минимальную температуру роста ниже 37 °С, а максимальную — выше 48 °С, но ниже 70 °С. Эта подгруппа включает представителей различных систематических групп — бактерий, акти-номицетов, дрожжей, грибов, водорослей.

Термотолеранты характеризуются максимальной температурой роста, равной 45—48 °С (для бактерий). Однако некоторые мезофильные штаммы также могут иметь максимальную температуру, равную 45 °С. В таких случаях отличить термотолерантный штамм от мезофильного можно по изменению величины скорости роста при незначительном (на 3—6°) сдвиге температуры в сторону возрастания от значения температур, являющихся оптимальными для мезофильных штаммов бактерий (обычно 37 °С). При таком увеличении температуры скорость роста термотолерантного микроорганизма существенно не изменится, а мезо-фильный штамм будет развиваться с заметно снижающейся скоростью. Если микроорганизм окажется эвритермофильным (со сравнительно низкой максимальной температурой 48—50 °С), то его скорость роста при повышении температуры от 37 до 43 °С резко возрастет.

Таким образом, по изменению скорости роста можно установить принадлежность данного штамма микроорганизма к той или иной температурной группе или подгруппе.

Итак, термотолерантный микроорганизм способен размножаться с почти одинаковой скоростью как при обычной температуре (37 °С), являющейся оптимальной для мезофильных штаммов, так и при более высокой (на 3—7° выше) температуре. Термотолерантный микроорганизм как бы безразличен к такому изменению температуры. Да и сам термин «термотолерантность» означает терпимость к повышению температуры. Следовательно, под термотолерантностью следует понимать способность микроорганизма размножаться без существенного уменьшения или увеличения скорости роста при указанном выше увеличении температуры. В природе и лабораторных условиях микроорганизмы могут подвергаться кратковременному воздействию высоких температур. Во время такого теплового воздействия клетки обычно не размножаются. После прекращения действия этого неблагоприятного для развития микроорганизма фактора одни штаммы могут сохранить репродуктивную способность (способность к размножению), другие оказываются менее устойчивыми и погибают. Устойчивость микроорганизмов различных температурных групп (психрофилов, мезо-филов, термотолерантов, термофилов) к кратковременному воздействию высоких температур без повреждения репродуктивной способности микроорганизма (при снятии действия этих температур) целесообразно характеризовать термином термоустойчивость (термо-резистентность).
Причины, обуславливающие способность термофилов существовать при высоких температурах

Многие ученые давно пытались установить, почему термофильные микроорганизмы могут существовать при таких высоких температурах, как 50—90 °С. Оказалось, что как структурные и клеточные элементы, такие, как оболочка, мембраны, рибосомы, так и входящие в состав клетки протеины, жиры, ферменты заметно отличаются качественно и количественно от подобных клеточных компонентов мезофильных форм.

Выяснилось также, что если некоторые элементы клетки недостаточно стабильны к высокой температуре (например, рибонуклеиновые кислоты), то их синтез в клетке осуществляется с большей скоростью. В этом процессе участвуют ферменты, отличающиеся высокой термостабильностью.

Оболочка клетки термофилов также обладает заметной устойчивостью к действию температуры. Это обусловлено ее химическим составом и более устойчивым к температуре механизмом (чем у мезофилов), осуществляющим синтез клеточных стенок.

Д ж. Т. Форрестер и А. Д ж. Вике н показали, что содержание липидов в клеточных стенках термофилов выше, чем в стенках большинства мезофилов. В клеточных стенках Вас. coagulans, выращенных при 55 °С, обнаружен необычный полимер, подобный тейхоевой кислоте.

Значительный интерес представляют ранние исследования X. Коффлера, который показал, что клеточные белки, выделенные из жгутиков термофилов, более термостабильны, чем белки, выделенные из жгутиков мезофильных форм микробов.

Американский исследователь Т. Д. Брок высказал мнение о решающей роли клеточной мембраны в предохранении клетки от теплового повреждения. Некоторые исследователи выдвигают предположение, что состав мембранных липидов определяется максимальной или минимальной температурой роста микроорганизмов. Так, показано, что среди мембранных липидов Bacillus stearothermophilus преобладают жирные кислоты с более длинными и разветвленными цепочками (С15 и С17). Вероятно, эти кислоты могут придавать большую упругость мембранной структуре.

Помимо качественных различий в химическом составе клеточных мембран, клетки термофильных бактерий содержат больше мембран, чем клетки мезофильных бактерий. X. Бодман и Н. Е. Велкер нашли увеличение количества мембран в клетках Вас. stearothermophilus при повышении температуры роста. Так, при температуре роста Вас. stearothermophilus 55 °С на долю мембран приходилось 16,5 %, а при 65 °С — 17,8% от сухой массы клеток. Также было отмечено, что с повышением температуры роста указанной культуры от 55 до 65 °С отношение протеинов к липидам в мембранах возрастает от 3,65 до 5,22 соответственно.

Клеточные мембраны могут иметь различное строение у разных групп микроорганизмов. Так, например, известно, что у грамотрицатель-ных бактерий мезосомы менее развиты, чем у грамположительных. Возможно, поэтому основные виды облигатных термофильных бактерий грамположительны.

Мембраны в клетке служат не только границей раздела фаз, но и местом локализации ряда важнейших биологических систем. В настоящее время имеются данные, указывающие, что некоторые ферменты термофилов приобретают термостабильность, когда они связаны с клеточной мембраной. Если их отделить от мембраны с помощью ультразвука, то эти ферменты становятся относительно термолабильными.

Мембраны термофильных бактерий отличаются высокой механической прочностью.

Было показано, что многие облигатно-термо-фильные бактерии (Вас. stearothermophilus, Вас. coagulans, Вас. denitrificans) способны образовывать шаровидные протопласты при развитии сначала в интенсивно аэрируемой среде, а затем (в фазе экспоненциального роста) без аэрации.

Одним из главных факторов, вызывающих процесс образования протопластов, является резкий дефицит кислорода в среде. Образовавшиеся в этих условиях протопласты могут длительное время не лизироваться в обычных условиях, что свидетельствует об их значительной осмотической устойчивости.

Рибосомы, выделенные из клеток облигатно-термофильных бактерий, обладают значительно большей термостабильностью, чем рибосомы, выделенные из клеток мезофильных форм. Высказывается предположение, что наибольшая стабильность рибосом у термофилов может быть благодаря различиям в составе и структуре рибосомальных протеинов.

Интересно привести данные, полученные при изучении термостабильности рибосом у Thermus aquaticus, оптимальная температура роста которой равна 70 °С.

Рибосомы грамотрицательной палочки Thermus aquaticus были устойчивы при нагревании до 79 °С, а рибосомы Bacterium coli разрушались при увеличении температуры до 59 °С. Температура денатурации рибосом Т. aquaticus коррелирует с максимальной температурой роста этой бактерии, также равной 79 °С. Рибосомы грамцоложительной термофильной бациллы Вас. stearothermophilus денатурировались при температуре 72 °С.

Химический состав рибосом Т. aquaticus следующий: 59% белка и 41% РНК. По процентному содержанию этих компонентов рибосомы Т. aquaticus заметно отличались от рибосом грамотрицательной бактерии В. coli, которая состояла из 41% белка и 59% РНК. Увеличение содержания белка, по-видимому, обеспечивает повышенную термостабильность рибосом культуры Т. aquaticus.

При изучении нуклеотидного состава рибо-сомальной РНК, выделенной из клеток Т. aquaticus, Вас. stearothermophilus и В. coli, было выявлено повышенное содержание гуанина и цитозина в молекуле РНК Т. aquaticus и Вас. stearothermophilus по сравнению с РНК, выделенной из В. coli.

Рибосомальная РНК, выделенная из клеток термофильных бактерий, более устойчива к действию рибосомальной рибонуклеазы, чем РНК, выделенная из мезофильных форм микроорганизмов.

Интересно было сравнить термоустойчивость рибосом Т. aquaticus и В. coli с терморезистентностью выделенных из этих рибосом рибосомальных РНК. Отмечено, что, хотя рибосо-мальная РНК Т. aquaticus более термоустойчива, чем р-РНК В. coli, обе изолированные из рибосом р-РНК были значительно менее термостабильными, чем интактные рибосомы этих же микроорганизмов.

Те клеточные элементы, которые у термофилов термолабильны (транспортная РНК), способны быстро восстанавливаться после их разрушения или инактивации. В. Бабелаи И. Холдстворт установили, что оборачиваемость т-РНК в клетках термофилов гораздо выше, чем у мезофильных форм; этим обеспечивается более высокая скорость синтеза протеинов термофилами. По данным С. М. Фридман и И. Б. Вайнштейн, фермент аминоацил-т-РНК-синтетаза, выделенный из термофильной бактерии Вас. stearothermophilus, обладает высокой термостабильностыо, сама же т-РНК термолабильна.

Таким образом, клетки термофилов способны к быстрому ресинтезу разрушенных и инак-тивированных клеточных компонентов. С другой стороны, т-РНК экстремально-термофильной бактерии Т. aquaticus была более термо-стабилъной и не подвергалась денатурации при 68 °С, в то время как т-РНК В. coli была стабильной только до 55 °С.

Вероятно, высокая термостабильность т-РНК Т. aquaticus, так же как и р-РНК, связана с повышенным содержанием в ее молекуле гуанина и цитозина в сравнении с более низкими концентрациями этих оснований в т-РНК В. coli и Вас. stearothermophilus.

Различные ферментные системы, а также отдельные ферменты термофилов неодинаково устойчивы к действию высокой температуры. Наиболее устойчивы гидролитические ферменты. По степени термостабильности Л. Л. К э м п -белл и Б. Пейс разделяют ферменты на три группы. Среди них наиболее стабильными являются а-амилаза, протеаза, ферменты, активирующие аминокислоты.

Высокой терморезистентностью отличаются аминоацилирующие ферменты, принимающие участие в синтезе белка экстремально-термофильной бактерии Т. aquaticus. Эти ферменты были более термостабильными и биологически активными при оптимальной температуре их действия, равной 70°С, чем те же ферменты В. coli при 45 °С. На высокую степень биологической активности аминоацилсинтетаз Т. aquaticus указывает тот факт, что процесс аминоацилирования у Т. aquaticus заканчивается в первые 3 мин, а у В. coli полное ами-ноацилирование наступало через 6 мин.

Эти данные согласуются с результатами исследователей, изучавших свойства аминоацилт-РНК-синтетаз облигатно-термофильной бактерии Вас. stearothermophilus. Этот фермент был биологически активен при более высокой температуре (55 °С), чем взятый для сравнения фермент из В. coli (37 °С). Однако некоторые экспериментальные данные свидетельствуют о том, что высокий температурный оптимум для ами-ноацилирования у Вас. stearothermophilus не является необходимым. Б. Бабела и И. Холд-сворт сообщили о потере 50% активности аминоацилсинтетазы Вас. stearothermophilus после инкубирования этого фермента при температуре 60 °С в течение 10 мин. Термостабильность аминоацилсинтетазы Вас. stearothermophilus оказалась низкой при температуре, близкой к оптимальной температуре роста указанного микроорганизма. В противоположность этому у Т. aquations обнаружена хорошая корреляция между температурным оптимумом ами-ноацилирования и оптимальной температурой роста, равной 70 °С.

Из экстремально-термофильной бактерии (штамм АТ-62) был выделен фермент аспарто-киназа. Этот фермент катализирует образование таких аминокислот, как лизин, треонин и изолейцин. Аспартокиназа очень термостабильна. Максимально активен этот фермент при 70 °С, что коррелирует с оптимальной температурой роста указанного штамма бактерии.

Фермент фруктозо-1,6-дифосфатальдолаза был выделен из бактерии Т. aquaticus. Температурный оптимум действия этого фермента около 95 °С; он стабилен при 80 °С в течение 1 ч в отсутствие субстрата и при низкой концентрации белка. Значительный интерес представляет сравнение терморезистентности фрук-тозо-1,6-дифосфатальдолаз, выделенных из клеток Т. aquaticus и Вас. stearothermophilus. Оба фермента термостабильны, но фермент, выделенный из Т. aquaticus, был более устойчив к прогреву. Так, указанный фермент, выделенный из Вас. stearothermophilus, инактиви-ровался при 75 °С, а фермент, выделенный из клеток Т. aquaticus УТ-1, был стабилен при 97 °С.

Ферменты гликолитического превращения глюкозы — фосфофруктокиназа и фосфоглюко-мутаза — были выделены японскими исследователями из клеток экстремально-термофильной бактерии Flavobacterium thermophilus НВ-8. Эти ферменты термостабильны. Так, фосфофруктокиназа не инактивировалась в течение 1 ч при 80 °С, и за то же время потеря активности составила всего 10% при температуре прогрева, равной 90 °С. Фосфоглюкомута-за была стабильна при 85 °С. Такая высокая термоустойчивость этих ферментов — одно из характерных свойств экстремально-термофильных бактерий. Эти ферменты играют важную роль в регуляции углеводного обмена при высоких температурах.

Среди различных гидролитических ферментов, выделенных из термофильных микроорганизмов, развивающихся при 55—65 °С, наиболее изучена а-амилаза. Она не инактивиру-ется после 24-часовой выдержки при 65 — 70 °С. Активность этого фермента утрачивалась на 29% от первоначальной лишь после суточной выдержки при 85 °С. Высокая термостабильность а-амилазы обусловлена повышенным содержанием ионов кальция в ее молекуле, а также повышенной стойкостью к агентам, разрушающим водородные связи, а-амилаза была выделена из облигатно-термофильной бактерии Вас. circulans 186 с оптимальной температурой развития 56 °С и термотолерантного штамма Вас. subtilis 110 с оптимальной температурой развития 50 °С. Наиболее высокой термостабильностью обладает а-амилаза облигат-но-термофильного штамма Вас. circulans 186. Инкубация этого фермента при 65 °С в течение 5 ч приводит к снижению активности на 85%. Полная потеря активности в этих же условиях наблюдалась у а-амилазы, выделенной из мезо-фильной культуры Вас. subtilis.

Обнаружены различия в аминокислотном составе а-амилазы термофильных и мезофильных форм микробов. Содержание глютаминовой и аспарагиновой аминокислот в я-амилазах термофильных штаммов больше, чем в а-ами-лазах мезофилов. Как известно, эти аминокислоты могут легко связываться с ионами кальция.

Многие исследователи предполагают, что кальций стабилизирует вторичную и третичную структуру а-амилазы. Было установлено, что существует зависимость между оптимальной температурой роста бактерий и молекулярной массой выделенной из них а-амилазы. Так, а-амилаза, выделенная из Вас. circulans штамм 186, имеет молекулярный вес около 17 000; у а-амилазы, выделенной из Вас. subtilis штамм 110 (с пониженным температурным оптимумом развития), молекулярный вес оказался 28 000—30 000; а-амилаза, выделенная из различных форм мезофильных бактерий Вас. subtilis, имеет молекулярный вес 48 000— 50 000.

В настоящее время интенсивно изучаются особенности термостабильной протеазы. Проводятся глубокие исследования по изучению структуры и физико-химических свойств этого фермента, выделенного из различных форы термофильных микроорганизмов.

Так, был выделен термофильный актиномицет Micromonospora vulgaris штамм 42, развивающийся при 53—55 °С и активно синтезирующий протеазу. Изучены условия культивирования актиномицета и свойства протеолитических ферментов, которые он синтезирует. Выяснилось, что протеаза имеет четыре оптимума, в зависимости от рН раствора. Полученные в чистом виде препараты нейтральных протеаз из культуры актиномицета обладали повышенной термостабильностью и отличались от нейтральных протеаз, выделенных из мезофиль-ных микроорганизмов, рядом физико-химических свойств и специфичностью действия. Из указанного препарата протеаз было выделено два гомогенных препарата, которые заметно отличались своими свойствами. Молекулярный вес одной из протеаз около 50 000, температурный оптимум роста 75 °С. Другая протеаза имела молекулярный вес около 30000, температурный оптимум роста 62—65 °С. Наиболее высокой активностью обладала протеаза с молекулярным весом 50 000.

Многие свойства облигатно-термофильных микроорганизмов закреплены наследственно, и эти формы не могут существовать при перенесении их в обычные температурные условия.

Споры термофильных микроорганизмов обладают значительно большей термоустойчивостью, чем споры мезофильных форм. Предполагают, что повышенная устойчивость спор термофилов к высокой температуре объясняется увеличенным содержанием в них дипико-линовой кислоты, а также уменьшением отношения количества магния к кальцию. Отмечено увеличение содержания в спорах термофильной бактерии Вас. stearothermophilus ли-пидов.

Термофильные бактерии широко распространены в природе. Их можно выделить из почвы, торфа, ила, воды, компоста, навоза и т. д. Но не всегда эти организмы развиваются в термофильных зонах. Однако наиболее интенсивное развитие термофилов наблюдается в местах, подвергающихся воздействию высоких температур. Особенно это касается бактерий, которые не способны развиваться при температуре ниже 40 °С. Эти бактерии называются обли-гатно-термофильными, имеют температурный оптимум роста 55—65 °С и выше.

В значительных количествах термофильные бактерии обнаруживаются в огородных и полевых почвах, куда они попадают в основном вместе с органическими удобрениями. Было показано, что в окультуренных почвах термофилов довольно много, а в необработанных почвах их почти нет. Эти наблюдения дали возможность использовать термофильные микроорганизмы в качестве показателей степени окультуренности почв. Однако термофильные микроорганизмы были обнаружены даже в почвах и водах Крайнего Севера.

По сравнению с почвой такие субстраты, как сточные воды, компост, навоз, самонагревающиеся торф и сено, содержат большее количество термофильных бактерий. Самонагревание сена и торфа, которое иногда приводит к пожару, в значительной мере обусловливается развитием термофилов. Наличие термофильных микроорганизмов в кишечном тракте и экскрементах животных и человека отмечено многими исследователями.

Интересно отметить, что такие продукты, как нефть и входящие в ее состав вещества, также могут усваиваться термофильными микроорганизмами.

Широко распространены термофильные суль-фатвосстанавливающие бактерии, оптимальная температура роста которых достигает 55—60 °С. Известны также термофильные бактерии, окисляющие различные соединения серы до молекулярной серы и серной кислоты. Горячие источники, богатые сероводородом, изобилуют термофильными видами тионовых бактерий. Из Брагунских терм (Северный Кавказ) с температурой 89—90 °С выделена тиобактерия Thiobacillus thermophilica Imschenetskii. Оптимальная температура роста этой бактерии 55 — 60 °С, максимальная — около 80 °С, минимальная 40 °С.

С. И. Кузнецов в 1955 г. обнаружил, что в источниках Камчатки с температурой 90—98 °С развиваются термофильные бактерии. В 1967 —1971 гг. американскими исследователями были выделены из субтермальных вод с температурой 85—89 °С бактерии, не образующие спор, которые не способны развиваться при температуре ниже 40—45 °С, они относятся к виду Thermus aquaticus. Температурный оптимум развития этих бактерий 70—80 °С.

Термофильные анаэробные бактерии рода Clostridium были обнаружены во всех обследованных пробах воды и почв, взятых в термальных зонах, а также в компостах.
Экстремально-термофильные бактерии

В последние годы американскими исследователями Т. Д. Броком и X. Фризом была описана новая группа бактерий — экстремальные термофилы, в которую вошли виды, способные развиваться при крайне высоких (экстремальных) температурах. Эти формы выделены из различных термальных источников, вода которых имела температуру 85—95 °С и слабощелочную реакцию.

Бактерии — неподвижные грамотрицательные палочки; оптимальная температура развития 70 °С. Они описаны как виды нового рода термус (Thermus). Позднее подобные формы бактерий были найдены многими исследователями.

Как известно, при повышении температуры изменяется характер воздействия на клетку ряда физических и химических факторов. Так, при высокой температуре уменьшаются вязкость и увеличивается степень ионизации воды, уменьшается растворимость кислорода и других газов в водной среде, ускоряется течение химических реакций и т. д. Брок указывает, что в подобных условиях существования происходит эволюционная адаптация, при которой организм полностью зависит от определенного значения решающего фактора, летального (губительно действующего) на другие микроорганизмы.

По мере повышения температуры разнообразие обнаруживаемых групп различных микроорганизмов сужается. Первыми исчезают наиболее сложные по строению организмы. Высокие температуры хорошо переносят только бактерии.

В большинстве случаев при экстремальных условиях (в частности, при наиболее высоких температурах, 80—90 °С) существующие микроорганизмы приближаются к чистой культуре в местах обитания, т. е. к одному виду. Необходимо отметить, что в источниках с высокой температурой часто обнаруживаются наряду с указанными бактериями также и термофильные водоросли. Такие водоросли благодаря их способности фиксировать углекислый газ и молекулярный азот могут развиваться в воде горячих источников с низким содержанием органических веществ. По-видимому, углерод и азот органических соединений, содержащихся в водорослях, ассимилируется бактериями. Эта зависимость развития бактерий от контакта с водорослями может быть, по мнению Б рока, настолько велика, что без водорослей в горячих источниках с низким содержанием органических веществ рост бактерий становился бы невозможным.

Способность неспорообразующих бактерий, обитающих в горячих источниках, существовать в природе при температуре от 40 до 93 °С и выше дает основание для выделения этих микроорганизмов в новую группу экстремально-термофильных бактерий. Сверхтермофиль-ность этих бактерий по сравнению с облигатно-термофильными бациллами характеризуется более высокими температурными параметрами роста. Указанная группа экстремально-термофильных бактерий специфическая, что обусловлено местом обитания этих микроорганизмов.
Все очень просто! По Гиппократу - пища это лекарство. Но не можем же мы постоянно принимать лекарства!
"Есть или не есть и что есть из того, что есть?"
Если ты поднялся на вершину горы и тебе некуда идти - иди дальше!

Нажимайте на значок пальца в верхнем правом углу и спи крепко.

Аватар пользователя
Ansaraides
Бывалый
Сообщений: 3446
Зарегистрирован: 09 июл 2013, 08:07
Награды: 8
Откуда: Город Святой Марии
Пол: Мужской
:
Замок
Благодарил (а): 1098 раза
Поблагодарили: 2203 раза

Свойства бактерий

Сообщение Ansaraides » 03 май 2015, 11:09

Thermus aquaticus широко распространен в природе. Бактерии этого нового вида плохо развиваются при 55 °С, температурный минимум роста 42 °С, при 40 °С рост не отмечен. Оптимальная температура роста 70 °С, максимальная 79 °С. Эти бактерии являются обли-гатными аэробами. Оптимум рН роста 7,5—7,8. Культура имеет желтую или оранжевую окраску. Размер палочек 0,5 X 5 — 10 мкм.

При температурах выше и ниже оптимальной рост происходит при образовании длинных нитей.

Из различных горячих источников были выделены бактерии подобного вида, способные расти при 84 °С и даже при 91 °С; клетки их бледно-желтого цвета. Выделены также бактерии, не образующие пигмента; температурный диапазон развития их от 40 до 80 °С, оптимальная температура роста 69—71 °С.
Спорообразующие аэробные термофильные бактерии

Эти формы бактерий, как указывалось выше, широко распространены в природе. Многие мезофильные виды бацилл имеют своих аналогов среди термофилов.

4631602.jpg
4631602.jpg (33.29 KiB) 641 просмотра


Рис. 189. Термофильная бактерия Вас. stearotliermophilus. Увел. X 3000.

В настоящее время известно всего лишь два самостоятельных вида термофильных спо-рообразующих бактерий — Вас. stearother-mophilus и Вас. coagulans. Клетки Вас. stearo-thermophilus представлены на рисунке 189.

Процессы роста и размножения у термофильных микроорганизмов проходят с большей скоростью, чем у мезофильных форм микробов. У облигатно-термофильных бактерий, которые не способны развиваться при температурах ниже 37—40 °С и имеют оптимальную температуру роста 55—65 °С, весь цикл развития проходит за 5—8 ч.

Скорость роста мезофильных культур по сравнению со скоростью роста термофилов значительно ниже.

Продолжительность фазы интенсивного роста (лаг-фаза) облигатно-термофильных бактерий чрезвычайно коротка. Продолжительность лаг-фазы термофильных микроорганизмов меньше, чем мезофильных. Так, у Вас. coagulans наименьшая продолжительность лаг-фазы равна 15 мин при 65 °С роста культуры и 20— 25 мин при 55 °С.

Максимальное количество клеток, накапливаемое в культурах облигатно-термофиль-ных бактерий, колеблется в пределах 109— 1,3-109 на 1 мл при 55—60 °С и снижается до 6.Ю8-8-108 при 65-70 °С.
Влияние аэрации и перемешивания на рост и развитие аэробных термофильных бактерий

Одним из важнейших факторов, определяющих рост и развитие термофильных микроорганизмов, является скорость поступления кислорода и его концентрация в культуральной среде. Степень ограничения роста аэробных организмов при недостатке кислорода зависит от температуры выращивания. Растворимость кислорода в воде увеличивается с понижением температуры, поэтому рост микроорганизмов при более низких температурах не ограничивается содержанием кислорода в такой степени, как в случае инкубации при высоких температурах. Этим и объясняется тот факт, что общий урожай организмов, выращенных при низких температурах, часто оказывается выше, чем урожай микроорганизмов, выращенных при более высоких температурах, хотя скорость роста в последнем случае может быть больше.

Процессы метаболизма в клетках термофилов протекают с гораздо большей скоростью, чем в клетках мезОфилов. Поэтому концентрация растворенного в среде кислорода может явиться фактором, лимитирующим рост термофильных микроорганизмов. Однако при культивировании термофильных микроорганизмов на богатых естественных средах в условиях интенсивной аэрации организмы могут и не испытывать недостатка в растворенном кислороде. Но при выращивании термофилов на синтетических средах количество растворенного кислорода начинает выступать в роли решающего фактора.

Очень интересны опыты Р. Дж. Доунея. Этот исследователь показал, что при повышенной температуре необходимо насыщение среды кислородом под давлением, равным 1 атм. В этих условиях растворимость кислорода увеличивается. Так, при 60 °С концентрация кислорода была равна 139 микромолям, это значение близко к концентрации кислорода в среде для развития мезофильных форм при обычных температурах (143 — 240 микромолей). Выращивая Вас. stearothermophilus на полноценной питательной среде с повышенным содержанием кислорода при 60 °С, Доунею удалось получить большую биомассу этих бактерий. Таким образом, выяснилось, что биомасса клеток является функцией концентрации кислорода в среде и максимальное ее количество достигается при растворении кислорода в среде под давлением, равным 1 атм. Дальнейшее увеличение концентрации кислорода замедляет рост бактерий.

Процесс дыхания у термофильных микроорганизмов осуществляется гораздо интенсивней, чем у мезофилов. В лаборатории Л. Г. Логиновой был отмечен рштересный факт, ранее не описанный в литературе. При ускорении процесса дыхания с повышением температуры культивирования в клетках термофильных микроорганизмов заметно увеличивалось количество цитохромов. Особенно значительно оно возрастало в клетках облигатно-термофильных бактерий Вас. stearothermophilus, Вас. circu-lans, Вас. megaterium, Вас. brevis при температуре выращивания 65 °С. При этой температуре количество цитохромов возросло примерно в 2—2,5 раза по сравнению с их количеством в клетках бактерий, выращенных при температуре 55 °С.

Интересно отметить, что некоторое увеличение количества цитохромов при повышении температуры роста также наблюдалось и у мезофилов, но оно было значительно слабее, чем у термофильных форм микробов.

Потребность термофилов в питательных веществах зависит от температуры их роста. Л. Л. Кэмпбелл и Б. Пейс разделили по этому признаку термофильные спорообразующие бактерии на три группы. К первой группе относятся термофильные бактерии, потребность в питательных веществах которых не зависит от температуры. Бактерии второй группы нуждаются в дополнительном питании при повышении температуры выращивания, .а третьей группы — при понижении температуры.
Анаэробные термофильные бактерии

Значительную часть спороносных термофильных бактерий составляют анаэробные виды. Известны облигатно-термофильные масляно-кислые, целлюлозные, десульфурирующие и метанобразующие бактерии.

Термофильные целлюлозные бактерии. Этих бактерий обнаруживают обычно в компостах, разлагающихся растительных отбросах, илах и т. д. В таких субстратах эти бактерии наряду с термофильными целлюлозоразлагающими грибами и актиномицетами находят благоприятные условия для своего развития. Когда температура поднимается до 60—65 °С, физиологическая активность грибов и актиномицетов резко снижается и разрушение клетчатки полностью осуществляется бактериями.

Развитие целлюлозных бактерий можно заметить сначала по газообразованию, затем по разрушению клетчатки (фильтровальной бумаги) и появлению желто-оранжевого пигмента.

Чистые культуры этих бактерий получить довольно трудно, и это удавалось немногим исследователям. Типичным мезофильным представителем является бактеррш Bacillus omeli-anskii, названная в честь В. Л. Омелянского, впервые описавшего этот микроорганизм. В качестве типичного термофильного представителя можно назвать Clostridium thermocellulaseum. Описания мезофильных и термофильных видов указанных бактерий тождественны, поэтому А. А. Имшенецкий считает, что они представляют один вид. При этом термофилы могут рассматриваться как варианты мезофилов.

Морфологически целлюлозные бактерии представляют собой тонкие, прямые или слегка изогнутые палочки, часто с округлыми спорами на концах клеток. Палочки подвижны, жгутики расположены по всей поверхности клетки.

Продуктами обмена веществ анаэробных целлюлозных бактерий, выделяющимися в окружающую среду, являются водород, углекислый газ, этиловый спирт, глицерин, муравьиная, уксусная, молочная, янтарная, яблочная и фумаровая кислоты. Присутствуют также следы ацетальдегида, иногда — масляная кислота. Эти бактерии разлагают целлюлозу до низкомолекулярных углеводов, главным образом до целлобиозы и глюкозы. Гидролиз целлюлозы сопровождается появлением в среде фермента целлюлазы.

Термофильные метановые бактерии могут сопутствовать анаэробным целлюлозным бактериям или культивироваться совместно с ними. В начале этого века Ц. К о-олхаасом впервые были описаны термофильные метановые бактерии с температурными границами развития 45—69 °С. Наиболее типичными видами являются Methanobacterium soehngenii и Methanobacillus omelianskii. Эти бактерии представляют собой тонкие, прямые или слегка изогнутые неспороносные палочки.

Термофильные десульфурирующие бактерии нередко сопутствуют термофильным целлюлозным бактериям. При высоких температурах восстановление сульфатов осуществляется бактерией Desulfotomaculum nigrificans, которая представляет собой палочки с округлыми концами, иногда чечевицевидные и вздутые, подвижные, пери-трихи. Споры овальные, субтерминальные или терминальные.
Термофильные лучистые грибки (актиномицеты)

К термофильным лучистым грибкам относятся актиномицеты различных систематических групп, обладающие способностью развиваться при высоких температурах (50—60 °С), независимо от температурного минимума их роста.

9502309.jpg
9502309.jpg (44.79 KiB) 641 просмотра


Рис. 190. Схематическое изображение вегетативного и спороносного мицелия различных родов термофильных актиномпцетов.

Среди них встречаются актиномицеты, способные расти при 60—70 °С. Лучистые грибки, развивающиеся при обычных температурах (25 — 30 °С), не растут при температуре 50 °С и выше.

Количественный учет термофильных актино-мицетов в почвах и компостах был проведен В. Ваксманом с сотрудниками в 1939 г. Термофильные актиномицеты были обнаружены во всех почвах и во все сезоны года. Особенно много их в почвах, удобренных навозом (в среднем 200 000 на 1 г в весенних и летних пробах). Зимой термофильные актиномицеты составляли 10—15% от всей термофильной микрофлоры; весной и летом 70—90%. Количество термофильных лучистых грибков не зависит от географической закономерности, а определяется экологическими факторами, в частности типом почвы и степенью ее окультуреннооти.

7018829.jpg
7018829.jpg (40.36 KiB) 641 просмотра


Рис. 191. Гигантские колонии различных актиномицетов при разных температурах. Уменьшено в 2,5 раза.

Н. Д. Красильников (1970) указывает, что в пределах одного семейства и рода (например, Micromonospora) могут быть как термофильные, так и мезофильные культуры; несмотря на довольно стойкий признак термофильности, видимо, нецелесообразно ориентироваться на него при характеристике родов или более крупных таксономических единиц.

Актиномицеты, способные развиваться при 40—60 СС, встречаются среди представителей различных родов, но чаще всего среди культур рода Micromonospora. Ранее признак термофильности отражали в некоторых родовых названиях актиномицетов, растущих при повышенных температурах (рис. 190). При идентификации термофильных актиномицетов используют, как обычно, культурал.ьные признаки.

Большинство известных термофильных лучистых грибков быстро гидролизуют крахмал, свертывают и пептонизируют молоко, разжижают желатин и т. д., что свидетельствует о высокой ферментативной активности и может быть использовано в практике. Однако эти культуральные свойства лабильны и поэтому, с точки зрения многих исследователей, не могут быть основными критериями при определении вида.

Другие культуральные свойства, такие, как восстановление нитратов, образование сероводорода, в большей степени отражают физиологические особенности микроорганизма, более стабильны и, следовательно, играют существенную роль при идентификации вообще и термофильных актиномицетов в частности.

Для выделения термофильных актиномицетов разными авторами использовались разные методики. Выделение этих микроорганизмов хорошо удается на крахмальном агаре, крах-мально-аммиачно-сульфатпом агаре, а также мясо-пептонном агаре (МПА). Лучшим для этой цели оказался крахмально-аммиачно-сульфатный агар, на котором наблюдается слабый рост более требовательных к среде термофильных бактерий и, наоборот, хороший рост термофильных актиномицетов. Наиболее подходящая температура для выделения 55—60 °С.

Культивируют термофильные актиномицеты на самых различных средах.

Для получения хорошего роста и споруляции этих микроорганизмов обычно используют крахмал и неочищенную мальтозу. К. Е. Эриксон отмечает, что Micromonospora vulgaris хорошо растет при использовании следующих источников азота: пептона, трип-тона, гидролизата, казеина. Многие термофильные актиномицеты нуждаются в дополнительных компонентах среды, представляющих собой смеси аминокислот, витаминов, пуринов и пиримидинов.

Термофильные актиномицеты обладают большой скоростью роста. Их жизненный цикл проходит гораздо быстрее, чем у мезофильных штаммов. Термофильные актиномицеты образуют разветвленный мицелий из гиф, диаметр которых от 0,2 до 1 мкм. На твердых средах они растут в виде плоских колоний, достигающих 3—4 см в диаметре, а иногда и до 6—8 см (рис. 191), часто покрытых налетом, состоящим из воздушных гиф со спорами. Термофильные актиномицеты образуют воздушный и субстратный мицелии. Гифы воздушного мицелия без спор термофильных лучистых грибков, как правило, белоснежно-белого цвета. Воздушный мицелий со спорами или сохраняет белый цвет, или приобретает темно-серый оттенок. Серо-зеленые, голубые и желтые штаммы встречаются реже.

У некоторых термофильных актиномицетов в процессе развития изменяется цвет колоний на агаре от белоснежно-белого до желтого, грязно-зеленоватого, коричневого, красноватого и даже черного. Многие представители термофильных лучистых грибков образуют растворимый пигмент, который проникает в среду и окрашивает ее в яркие цвета.

4812606.jpg
4812606.jpg (31.63 KiB) 641 просмотра


Рис. 192. Термофильный актиномпцет Actinomyces diastaticus, штамм 7. Вверху — споры с шиповидной поверхностью (увел. X 10 000); внизу - форма спороносцев (увел. X 900).

Разные исследователи описывают наличие у термофильных актиномицетов прямых или спирально закрученных спороносцев (рис. 192). Имеются также формы с одиночными, парными спорами и спорами в виде цепочек, образованных на коротких веточках вегетативного воздушного мицелия. Споры всех термофильных актиномицетов круглые или эллипсоидальные (рис. 192) диаметром от 0,6 до 1,4 мкм. В них обнаружена дипиколиновая кислота, а также кальций и в меньшей степени магний, которые, как известно, обусловливают высокую термоустойчивость спор бактерий.

Изучение тонкого строения спор ряда актиномицетов позволило исследователям сделать вывод, что некоторые термофильные актиномицеты образуют споры, близкие по строению к спорам бактерий родов Bacillus и Clostridium.

Обмен веществ у термофильных микроорганизмов происходит более интенсивно, чем у мезофильных. Об этом свидетельствуют экспериментальные данные о более высокой ферментативной активности термофилов и о повышенном количественном содержании в клетках термофильных микроорганизмов некоторых ферментов.

Так, при изучении цитохромов в клетках мезофильных и термофильных представителей различных родов актиномицетов было обнаружено, что у некоторых термофильных актиномицетов (Thermoactinomyces sp., Actinobi-fida dichotomica, Mycropolyspora sp.) оказалось больше цитохромов типов с и а; очевидно, некоторые участки цепи переноса электронов (в частности, цитохромная система) термофильных штаммов могут значительно отличаться от таковых у мезофильных форм.

Нередки случаи, когда термофильные актиномицеты способны образовывать в больших количествах экзоферменты, действующие на различные субстраты, что может быть использовано в практике. Так, выделен термофильный актиномицет Act. diastaticus штамм 7 (рис. 192), образующий целлюлозолитические и гемицеллюлозолитические ферменты. Однако образование подобных экзоферментов не является свойством, специфическим для термофилов.

С целью выяснения биохимических особенностей термофильных актиномицетов многие исследователи изучали состав нуклеотидов ДНК как термофильных, так и мезофильных видов. Результаты исследований дают возможность полагать, что термофильные актиномицеты содержат сравнительно меньше ГЦ (гуанин + цитозин) в составе ДНК, чем мезофиль-ные штаммы. Этот вопрос требует дальнейших исследований. В биомассе актиномицетов, выросших при высокой температуре (55—57 °С), содержится в 2 раза больше свободных нуклеотидов; количество нуклеиновых кислот, наоборот, падает. Свободные нуклеотиды, видимо, играют более значительную роль в интенсификации обмена веществ у термофилов по сравнению с мезофильными микроорганизмами.

Есть данные о том, что термофильные штаммы рода Actinomyces не чувствительны к фагам, активным против мезофильных штаммов того же рода, хотя существенных биохимических различий в составе клеточных стенок у мезофильных и термофильных актиномицетов не обнаружено.
Практическое значение термофильных бактений и актиномицетов

Термофильные бактерии используют для получения микробной биомассы, очистки сточных вод. Ценными являются продукты обмена веществ термофилов, выделяющиеся в окружающую среду. Эти микроорганизмы продуцируют такие физиологически активные вещества, как антибиотики, витамины, ферменты.

Обычно для получения микробной биомассы используют термотолерантные дрожжи. Их выращивают на средах, содержащих углеводы (сусловые среды), некоторые спирты или углеводороды нормального строения (н-алканы). В последнее время для этих целей применяют и термофильные бактерии.

Выросшая микробная биомасса вполне полноценна в пищевом отношении: содержит 40— 60% белка, незаменимые аминокислоты, разнообразные витамины. Высушенная биомасса (в виде муки) — белково-витаминный концентрат (БВК) — в небольшом количестве добавляется к пищевому рациону животных.

Продукты обмена веществ термофильных бактерий нашли широкое применение в промышленности. Так, молочнокислые бактерии Bact. delbruckii используются как активные кислото-образователи. Еще в 1923 г. В. М. Шапошникову и А. Я. Мантейфель удалось наладить производство молочной кислоты с помощью термофильных бактерий. Ряд термофильных молочнокислых бактерий применяется в молочной промышленности для получения высококачественного творога.

Из различных физиологически активных веществ, продуцируемых термофильными микроорганизмами и используемых в практике, огромное значение имеют ферменты.

Список ферментов, продуцируемых термофильными микроорганизмами и применяемых в промышленности, очень обширен.

Так, в текстильной промышленности А. А. Имшенецким с сотрудниками была применена амилаза. Этот фермент образовывала термофильная бактерия Вас. diastaticus. Амилаза используется и в спиртовой промышленности для размягчения зерновых и картофельных сред при высоких температурах.

Протеазы применяют для переработки сырья животного происхождения (обезволашивания кожи, получения клея и т. д.). Выделены и изучены термофильные актиномицеты, активно образующие протеолитические и амилолитические ферменты, комплекс целлюлозе- и гемицеллюлозолитических ферментов.

Для получения целлюлолитических ферментов пытались использовать термофильные анаэробные бактерии и актиномицеты. С помощью целлюлолитических ферментов можно повысить питательную ценность грубых кормов для животных, осахаривать сульфатную целлюлозу до глюкозы, получая таким образом из непищевого сырья ценный питательный продукт. Эти ферменты способны расщеплять полисахариды одревесневших, растительных материалов (шелуха злаковых культур, подсолнечная лузга) до Сахаров (глюкозы и ксилозы). Следовательно, открывается возможность замены кислотного гидролиза древесины и различных отходов ферментативным гидролизом. При этом полностью ликвидируются расход минеральных кислот и необходимость применения высоких температур и давлений при превращении целлюлозы в сахара.

Чешские ученые используют термофильные грибы и актиномицеты, которые продуцируют разлагающие целлюлозу ферменты, для воздействия на различные субстраты.

Л. Г. Логиновой выделен термофильный актиномицет Micromonospora vulgaris штамм РА-П4, образующий комплекс литических ферментов. Эти ферменты разрушают клеточные стенки различных бактерий и дрожжей (мертвых и живых). Литические ферменты могут найти применение в различных областях народного хозяйства: в повышении усвояемости и питательной ценности кормовой микробной биомассы, в борьбе с бактериальными инфекциями человека и животных и в других областях.

Термофильные бактерии издавна применяются для очистки сточных вод. Интерес к метановому брожению резко возрос, когда была обнаружена способность бактерий продуцировать витамин В12. В. Н. Букин показал возможность получения этого ценного витамина при сбраживании термофильными метановыми бактериями ацетоно-бутиловой барды. Одновременно может быть собран выделяющийся при этом метан (10—20 м3 на 1 м3 сброженной жидкости).

Термофильные микроорганизмы играют существенную роль в круговороте веществ в природе: в разрушении нефтей и озокеритов, превращениях серы и других процессах.

В ряде промышленных производств термофильные бактерии могут приносить и существенный вред: вызывают заражение сусла на пивоваренных заводах, порчу консервов (особенно анаэробные бактерии), сгущенного стерилизованного молока, сахарных сиропов. Поэтому необходимы надежные методы стерилизации.

Как для культивирования полезных форм термофильных бактерий, так и для методов борьбы с вредными для определенных процессов видами необходимо вести глубокое изучение морфологических, физиологических и биохимических особенностей этих микроорганизмов.

Для просмотра ссылок Вы должны быть авторизованы на форуме.
Все очень просто! По Гиппократу - пища это лекарство. Но не можем же мы постоянно принимать лекарства!
"Есть или не есть и что есть из того, что есть?"
Если ты поднялся на вершину горы и тебе некуда идти - иди дальше!

Нажимайте на значок пальца в верхнем правом углу и спи крепко.

Аватар пользователя
Ansaraides
Бывалый
Сообщений: 3446
Зарегистрирован: 09 июл 2013, 08:07
Награды: 8
Откуда: Город Святой Марии
Пол: Мужской
:
Замок
Благодарил (а): 1098 раза
Поблагодарили: 2203 раза

Re: Свойства бактерий

Сообщение Ansaraides » 30 авг 2016, 15:00

Псевдомонады (Pseudomonas)
pseudomonas[1].jpg
pseudomonas[1].jpg (37.7 KiB) 348 просмотра

Представленная в разделе информация о лекарственных препаратах, методах диагностики и лечения предназначена для медицинских работников и не является инструкцией по применению.


псевдомонады Псевдомонады (лат. Pseudomonas) — род грамотрицательных аэробных неспорообразующих бактерий. Псевдомонады подвижны и имеют форму прямых или изогнутых палочек и два полярно расположенные жгутика.

Псевдомонады широко используются в хозяйственной практике, а также в качестве моделей для многочисленных теоретических исследований.
Pseudomonas в систематике бактерий
Род псевдомонады (Pseudomonas) входит в семейство Pseudomonadaceae, порядок Pseudomonadales, класс гамма-протеобактерии (γ proteobacteria), тип протеобактерии (Proteobacteria), царство бактерии.

Род Pseudomonas включает следующие группы и виды бактерий:

группы: P. aeruginosa group, P. chlororaphis group, P. fluorescens group, P. pertucinogena group, P. putida group, P. stutzeri group, P. syringae group.

виды, не входящие в группы: P. adelgestsugas, P. abietaniphila, P. acephalitica, P. acetoxians, P. agarici, P. agarolyticus, P. alcaliphila, P. alginovora, P. alkylphenolia, P. andersonii, P. antarctica, P. argentinensis, P. arsenicoxydans, P. asplenii, P. auricularis, P. azotifigens, P. baetica, P. batumici, P. bauzanensis, P. benzenivorans, P. blatchfordae, P. borbori, P. borealis, P. brassicacearum, P. chengduensis, P. cinnamophila, P. clemancea, P. collierea, P. composti, P. constantinii, P. cremoricolorata, P. cuatrocienegasensis, P. deceptionensis, P. delhiensis, P. diterpeniphila, P. duriflava, P. entomophila, P. extremaustralis, P. filiscindens, P. formosensis, P. frederiksbergensis, P. gingeri, P. graminis, P. grimontii, P. guangdongensis, P. guezennei, P. guineae, P. halodenitrificans, P. halophila, P. helmanticensis, P. hunanensis, P. hussainii, P. hydrogenovora, P. indica, P. indoloxydans, P. japonica, P. jessenii, P. kilonensis, P. knackmussii, P. koreensis, P. kunmingensis, P. kuykendallii, P. lini, P. linyingensis, P. litoralis, P. lurida, P. lutea, P. marginata, P. marincola, P. meridiana, P. mesoacidophila, P. metavorans, P. mohnii, P. moorei, P. moraviensis, P. multiaromavorans, P. mutabilis, P. otitidis, P. pachastrellae, P. palleroniana, P. panacis, P. panipatensis, P. parafulva, P. pavonanceae, P. pelagia, P. peli, P. pohangensis, P. proteolytica, P. psychrophila, P. psychrotolerans, P. pudica, P. punonensis, P. rathonis, P. reactans, P. reinekei, P. reptilivora, P. rhizosphaerae, P. sabulinigri, P. sagittaria, P. salinarum, P. salomonii, P. saponiphila, P. segetis, P. seleniipraecipitans, P. simiae, P. taeanensis, P. taiwanensis, P. teessidea, P. thermocarboxydovorans, P. thermotolerans, P. thivervalensis, P. toyotomiensis, P. trautweinii, P. tropicalis, P. tuomuerensis, P. umsongensis, P. vancouverensis, P. vranovensis, P. wisconsinensis, P. xiamenensis, P. xinjiangensis, P. zeshuii, [Flavobacterium] lutescens.

В Pseudomonas aeruginosa group входят: P. aeruginosa (синегнойная палочка), P. alcaligenes, P. anguilliseptica, P. caeni, P. citronellolis, P. flavescens, P. jinjuensis, P. mendocina, P. nitroreducens/multiresinivorans group, P. oleovorans/pseudoalcaligenes group, P. cf. pseudoalcaligenes, P. resinovorans, P. straminea.

Pseudomonas nitroreducens/multiresinivorans group включает P. multiresinivorans, P. nitroreducens.
Pseudomonas oleovorans/pseudoalcaligenes group — P. oleovorans, P. pseudoalcaligenes.

Pseudomonas chlororaphis group — P. chlororaphis, P. fragi, P. lundensis, P. taetrolens.

Pseudomonas fluorescens group (флюоресцирующие псевдомонады) — P. azotoformans, P. brenneri, P. cedrina, P. congelans, P. corrugata, P. costantinii, P. extremorientalis, P. fluorescens, P. gessardii, P. libanensis, P. mandelii, P. marginalis, P. mediterranea, P. migulae, P. mucidolens, P. orientalis, P. poae, P. protegens, P. reptilovora, P. rhodesiae, P. synxantha, P. cf. synxantha V4.BP.03, P. tolaasii, P. trivialis, P. veronii.

Pseudomonas pertucinogena group — P. aestusnigri, P. denitrificans, P. pertucinogena.

Pseudomonas putida group — P. fulva, P. monteilii, P. cf. monteilii, P. mosselii, P. oryzihabitans, P. plecoglossicida, P. putida, P. cf. putida CH-B107, P. syncyanea.

Pseudomonas stutzeri group — [Spirillum] lunatum, P. balearica, P. luteola, P. stutzeri subgroup, P. xanthomarina.

Pseudomonas stutzeri subgroup — P. chloritidismutans, P. stutzeri.

Pseudomonas syringae group — P. asturiensis, P. avellanae, P. cannabina, P. caricapapayae, P. cichorii, P. coronafaciens, P. fuscovaginae, P. syringae group genomosp. 1, P. syringae group genomosp. 2, P. syringae group genomosp. 3, P. syringae group genomosp. 7, P. tremae, P. viridiflava.

Pseudomonas syringae group genomosp. 1 — P. syringae.
Pseudomonas syringae group genomosp. 2 — P. amygdali, P. ficuserectae, P. meliae, P. savastanoi, P. syringae pv. coryli.
Pseudomonas syringae group genomosp. 3 — P. syringae pv. antirrhini, P. syringae pv. apii, P. syringae pv. berberidis, P. syringae pv. coriandricola, P. syringae pv. delphinii, P. syringae pv. maculicola, P. syringae pv. passiflorae, P. syringae pv. persicae, P. syringae pv. philadelphi, P. syringae pv. primulae, P. syringae pv. ribicola, P. syringae pv. tomato, P. syringae pv. viburni.
Pseudomonas syringae group genomosp. 7 — P. syringae pv. helianthi, P. syringae pv. tagetis.

Значительное количество бактерий реклассифицировано из рода Pseudomonas в род Burkholderia. В частности:

возбудитель сапа лошадей и человека, ранее называемый Pseudomonas mallei, стал именоваться Burkholderia mallei
возбудитель мелиодоза Pseudomonas pseudomallei — Burkholderia pseudomallei
патоген лёгочных инфекций у больных муковисцидозом Pseudomonas cepacia — Burkholderia cepacia

Pseudomonas aeruginosa и другие виды, вызывающие инфекции человека
aeruginosa-01[1].jpg
aeruginosa-01[1].jpg (26.97 KiB) 348 просмотра

Pseudomonas aeruginosa - cинегнойная палочкаНаиболее важное с медицинской точки зрения имеет значение вид Pseudomonas aeruginosa (синегнойная палочка) — один из основных возбудителей локальных и системных гнойно-воспалительных процессов, особенно в условиях стационара. Риск развития инфекции, вызванной синегнойной палочкой, существенно возрастает у больных с нарушениями барьерных систем и факторов резистентности. Особому риску развития тяжелых инфекций, обусловленных синегнойной палочкой, подвержены больные, ослабленные муковисцидозом, а также страдающие нейтропенией. Инфекции, вызванные псевдомонадами, наиболее часто развиваются у недоношенных детей, у детей с врожденными аномалиями и у больных лейкозом, у больных с ожогами, у престарелых больных с изнуряющими заболеваниями. Большая часть этих инфекций наблюдается в стационарах, и они являются инфекциями, заражение которыми происходит из окружающей среды, а не от нормальной микрофлоры пациентов. В больницах синегнойные палочки выявляют на предметах обихода, санитехническом оборудовании, включая раковины, на мочеприемниках, катетерах, у обслуживающего персонала, а также в антисептических растворах и водных растворах медикаментов. Синегнойная палочка обнаруживается в кишечнике примерно 5% здоровых взрослых людей, у госпитализированных больных частота носительства возрастает.

В то же время, синегнойная палочка относится к нормальной микрофлоре человека и может встречаться в кишечнике, в дыхательных путях и на коже здоровых людей.

Кроме Pseudomonas aeruginosa инфекционные заболевания человека могут вызывать некоторые другие виды псевдомонад, которые, также как Pseudomonas aeruginosa, могут быть причиной пневмоний, бактериемий, септиемий.

Псевдомонады — возбудители заболеваний мочеполовых органов

Псевдомонады могут вызывать различные заболевания мочеполовой системы. Pseudomonas spp. являются причиной 6 % всех случаев острого простатита, они также могут вызывать эпидидимит (воспалительный процесс в придатке яичка), орхит (воспаление яичка).

pseudomonas-syringae[1].jpg
pseudomonas-syringae[1].jpg (84.72 KiB) 348 просмотра

Pseudomonas syringae на ясене
Pseudomonas syringae
Псевдомонас сиреневый (лат. Pseudomonas syringae) — вид фитопатогенных псеводмонад, вызывающих заболевания у большого числа растений, выражающихся в виде бурого слизеточение, обморожения, повреждения плодов и пятнистость листьев.

Существует около 50 патоваров (штаммов) Pseudomonas syringae, способных заражать разные виды растений, в частности, свёклу, пшеницу, ячмень, фасоль, горох, просо, клён, ясень, олеандр, оливковое дерево, яблони, сирень и другие.

Антибиотики, активные и неактивные в отношении псевдомонад

Антибактериальные средства (из имеющих описание в данном справочнике), активные в отношении псевдомонад: рифаксимин. Ципрофлоксацин активен в отношении Pseudomonas aeruginosa. Pseudomonas aeruginosa устойчива к тетрациклину. Левофлоксацин активен в отношении pseudomonas aeruginosa и Pseudomonas fluorescens. Псевдомонады
устойчивы к рокситромицину.

Pseudomonas в МКБ-10

Pseudomonas упоминаются в Международной классификации болезней МКБ-10:

в «Классе I. Некоторые инфекционные и паразитарные болезни (A00-B99)», в блоке «B95-B98 Бактериальные, вирусные и другие инфекционные агенты», в рубрике «B96.5 Pseudomonas (aeruginosa) как причина болезней, классифицированных в других рубриках». Данный код предназначен для использования в качестве дополнительного, когда целесообразно идентифицировать инфекционных агентов болезней, классифицированных в других рубриках

в «Классе X. Болезни органов дыхания (J00-J99)», блоке «J10-J18 Грипп и пневмония», в рубрике «J15.1 Пневмония, вызванная Pseudomonas»

Отправлено спустя 1 минуту 6 секунды:
[youtube]yt93WSPb7pk[/youtube]
Все очень просто! По Гиппократу - пища это лекарство. Но не можем же мы постоянно принимать лекарства!
"Есть или не есть и что есть из того, что есть?"
Если ты поднялся на вершину горы и тебе некуда идти - иди дальше!

Нажимайте на значок пальца в верхнем правом углу и спи крепко.

Аватар пользователя
Ansaraides
Бывалый
Сообщений: 3446
Зарегистрирован: 09 июл 2013, 08:07
Награды: 8
Откуда: Город Святой Марии
Пол: Мужской
:
Замок
Благодарил (а): 1098 раза
Поблагодарили: 2203 раза

Re: Свойства бактерий

Сообщение Ansaraides » 04 сен 2016, 10:54

Что такое биопленка?

В статье представлены данные литературы о биопленке — особой форме организации микрофлоры организма человека, роли микробных биопленок в возникновении и развитии многих распространенных заболеваний, причинах антибиотикорезистентности при их лечении.
What is biofilm?

The article presents published data on the biofilm — a special form of organization of the microflora of the human body, the role of microbial biofilms in the genesis and development of many common diseases, the causes of antibiotic resistance in their treatment.

Вплоть до конца прошлого века микробиология развивалась главным образом на основе исследований чистых культур микроорганизмов. В конце ХХ века сформировалось представление об особой форме организации микрофлоры организма человека — хорошо организованном взаимодействующем сообществе микроорганизмов, покрывающих поверхности кишечной стенки, других слизистых оболочек, кожи и зубов человека. На сегодняшний день известно, что большинство бактерий существуют в природе не в виде свободно плавающих клеток, а в виде специфически организованных биопленок (Biofilms). Причем сами бактерии составляют лишь 5-35% массы биопленки, остальная часть — это межбактериальный матрикс. Такая форма существования предоставляет бактериям массу преимуществ в условиях воздействия неблагоприятных факторов внешней среды и организма-хозяина. Микрофлора биопленки более устойчива к воздействию неблагоприятных факторов физической, химической и биологической природы по сравнению со свободно плавающими бактериями — они оказались очень устойчивы к воздействию ультрафиолетового излучения, дегидратации и вирусам, антибиотикам и факторам иммунной защиты [1, 3]. Фактором устойчивости биопленок оказывается слизисто-полимерный слой, вырабатываемый сразу после адгезии, и включающий липополисахариды, протеогликаны, гликопротеиды, эндополисахариды, аналогичные веществу клеточной стенки, гликокаликса и капсул бактерий. Примером защитной функции полимерной пленки является выживание Salmonella при хлорировании, что доказывает устойчивость биопленки к данному способу дезинфекции.

В природе биопленки распространены повсеместно. Формирование биопленок отмечено у большинства бактерий в природных, клинических и промышленных условиях. Они образуются в условиях текучести на границе двух средовых фаз (жидкость — жидкость, жидкость — воздух и т.д.). Биопленки обнаруживаются на твердых субстратах, погруженных в водный раствор, а также могут создавать плавающие маты на жидких поверхностях. Классическим примером биопленки может служить тонкое наслоение на скалах, находящихся посреди течения. При достаточных ресурсах для роста биопленки быстро растут до макроскопических размеров. В биопленках может содержаться множество различных видов микроорганизмов, например, бактерии, простейшие, грибы и водоросли, каждый из группы выполняет специализированные метаболические функции [2, 4, 5]. Watnick P. и Kolter R. справедливо называют биопленки городами микробов [1].

Современная биотехнология позволяет успешно использовать оптимальное сообщество микроорганизмов для выполнения определенных функций. Это актуально в производстве пищевых продуктов, лекарств и пищевых добавок, утилизации разного рода отходов, нейтрализации загрязнений воды и почвы нефтепродуктами. Такие сообщества называют иногда консорциумами микроорганизмов. Практика показала многократное увеличение эффективности работы микроорганизмов при такой организации.

Биопленка — сообщество микробов, которые прикреплены к поверхности или друг к другу, заключены в матрикс синтезированных ими внеклеточных полимерных веществ, имеют измененный фенотип, проявляющийся другими параметрами роста и экспрессии специфичных генов [6]. Это определение позволяет отличить микробные сообщества биопленок от похожих на них лишь внешне структур, например, колонии бактерий, растущих на поверхности агара, которые не проявляют ни одной из характеристик, свойственных истинной биопленке. Важно отметить, что бактерии, включенные в матрикс фрагментов, которые отрываются от биопленок на колонизированном медицинском устройстве и циркулируют в жидкостях тела, устойчиво проявляют все фенотипические характеристики исходной биопленки.

Выделяют пять стадий развития биопленки (рис.1):

    1. Сначала происходит первичное прикрепление микроорганизмов к поверхности (адгезия, сорбция) из окружающей среды (обычно жидкости). Эта стадия обратима.

    2. Окончательное (необратимое) прикрепление, иначе называемое фиксацией. На этой стадии микробы выделяют внеклеточные полимеры, обеспечивающие прочную адгезию.

    3. Созревание (в англоязычной литературе — созревание-I). Клетки, прикрепившиеся к поверхности, облегчают прикрепление последующих клеток, внеклеточный матрикс удерживает вместе всю колонию. Накапливаются питательные вещества, клетки начинают делиться.

    4. Рост (в англоязычной литературе — созревание-II). Образована зрелая биопленка, и теперь она изменяет свой размер и форму. Внеклеточный матрикс служит защитой клеток от внешних угроз.

    5. Дисперсия (выброс бактерий): в результате деления периодически от биопленки отрываются отдельные клетки, способные через некоторое время прикрепиться к поверхности и образовать новую колонию.

08.12[1].png
08.12[1].png (108.73 KiB) 333 просмотра

Рисунок 1. Стадии развития биопленки (копия из Wikipedia)

Основные свойства биопленки:
— взаимодействующая общность разных типов микроорганизмов;
— микроорганизмы собраны в микроколонии;
— микроколонии окружены защитным матриксом;
— внутри микроколоний — различная среда;
— микроорганизмы имеют примитивную систему связи;
— микроорганизмы в биопленке устойчивы к антибиотикам, антимикробным средствам и реакции организма хозяина.

К настоящему времени достоверно доказана роль микробных биопленок в возникновении и развитии таких распространенных заболеваний, как инфекции, связанные с катетеризацией сосудов, вызванные Staphylococcus aureus и другими грамположительными микроорганизмами; инфекции сердечных клапанов и суставных протезов, вызываемые стафилококками; пародонтит, обусловленный рядом микроорганизмов полости рта; инфекции мочевых путей, определяемые Е. coli и др. патогенами; инфекции среднего уха — причина, например, Haemophilus influenzae, муковисцидоз, вызываемый P. Aeruginosa и др.

Все эти заболевания трудны для лечения, имеют высокую частоту рецидивов и некоторые из них могут явиться причиной летальных исходов. Далеко не до конца ясны механизмы, по которым микроорганизмы, образующие биопленки, вызывают патологические процессы в макроорганизме.

Кроме тканей организма хозяина, микробные биопленки колонизируют различные медицинские устройства небиологической природы, внедряемые в организм человека (катетеры, водители ритма, сердечные клапаны, ортопедические устройства). Исследования имплантированных медицинских устройств с применением электронной микроскопии показали присутствие бактериальных биопленок.

Важно учитывать при подозрении на формирование биопленки у пациента:

    1. отслоение биопленок в кровотоке или мочевыводящем тракте может приводить к формированию эмболов;

    2. бактерии в биопленках могут обмениваться плазмидами резистентности (передача резистентности от вида к виду);

    3. биопленки могут снижать чувствительность бактерий к антимикробным агентам

    4. биопленки с гр. отриц. бактериями могут продуцировать эндотоксин, что может приводить к инфекционно-токсическому шоку;

    5. бактерии в биопленке не поддаются воздействию иммунной системы хозяина.

Многочисленные физиологические процессы, происходящие в биопленке, отличаются от физиологии чистых культур этих же бактерий. Соответственно, реакция микроорганизмов на изменение условий окружающей среды в биопленке существенно отличается от реакции каждого отдельного вида в монокультуре. Такая организация обеспечивает ее физиологическую и функциональную стабильность и является основой конкурентного выживания в экологической нише. Сообщество микроорганизмов организует единую генетическую систему в виде плазмид — кольцевых ДНК, несущих поведенческий код для членов биопленки, определяющих их пищевые (трофические), энергетические и другие связи между собой и внешним миром [2]. Последнее получило специальное определение как социальное поведение микроорганизмов — Qvorum sensis [1, 5].

Феномен коллективного поведения бактерий впервые был описан около 20 лет назад, однако функции и роль системы Qvorum sensis, которая обеспечивает социальное поведение бактерий, до сих пор остаются малоизученными и являются предметом крайне перспективного для медицинской практики научного поиска. В организме человека преимущество такой организации заключается в обеспечении гомеостаза органов, функциональность которых зависит от населяющих их микробов.

По современным представлениям, основу нормальной микрофлоры человека составляют облигатные анаэробные бактерии, количество которых достигает 1013-1014, что на 1-2 порядка превышает количество эукариотических клеток всех тканей и органов человека вместе взятых [3, 21]. Исследования последних лет показали, что представители нормальной микрофлоры присутствуют в организме человека в виде фиксированных к определенным рецепторам микроколоний, заключенных в биопленку, которая как перчатка, покрывает кожу и слизистые оболочки. Биопленка состоит из экзополисахаридов микробного происхождения, микроколоний и муцина [2]. Функционально биопленка напоминает плаценту. Если плацента регулирует взаимоотношения плода и организма матери, то биопленка выполняет схожую роль, регулируя взаимоотношения между макроорганизмом и окружающей средой. Кроме того, микроорганизмы, входящие в состав биопленок, осуществляют многочисленные метаболические реакции, вовлекаясь в процессы синтеза и деградации как соединений, образуемых в организме хозяина, так и чужеродных субстанций, участвуют в процессах распознавания, абсорбции и транслокации как полезных, так и потенциально вредных агентов [2, 3, 5]. При этом, как в любом микробиоценозе, в биопленках имеются постоянно обитающие виды бактерий (индигенная микрофлора) и транзиторные виды микробов. В состав кишечного содержимого входят представители 17 семейств, 45 родов и свыше 400 видов микроорганизмов, все они образуют сложнейшую по организации биопленку, и этот факт заставляет нас, например, совершенно по-новому взглянуть на механизм возникновения и причины дисбактериоза кишечника, а также способы его лечения. С этих позиций дисбактериоз нельзя рассматривать как колебания относительного содержания тех или иных видов микроорганизмов. Дисбактериоз кишечника представляет собой кардинальное нарушение строения биопленки слизистой толстого кишечника, а коллективный иммунитет патологической биопленки часто практически сводит на нет возможность коррекции дисбактериозов с помощью пробиотиков (препаратов живых культур основных микроорганизмов кишечника: бифидобактерий, лактобацилл, энтеробактерий и других). Таким образом, для практической медицины преимущество коллективного реагирования имеет и отрицательную сторону. Бактерии в биопленках имеют повышенную выживаемость в присутствии агрессивных веществ, факторов иммунной защиты и антибиотиков. Бактерии и грибы в биопленках выживают в присутствии антибиотиков, в частности, биопленки оказались способными выдерживать концентрации антибиотиков в 100-1000 раз больше терапевтических дозировок, подавляющих одиночные бактериальные клетки [10]. Поскольку свободные бактериальные клетки хуже защищены, чем биопленки, то антибиотик, высокоактивный in vitro при тестировании в чистой культуре, при испытаниях in vivo (когда преобладает фенотип биопленок) может оказаться неэффективным. В этой связи одной из основных проблем практической медицины становится проблема лечения заболеваний микробного происхождения, в тех случаях, когда чувствительность к антибиотикам микроорганизмов, ассоциированных в биопленку, не соответствует таковой, определенной в лабораторных тестах на клинических изолятах чистых культур бактерий. В связи с этим в последние годы идет активное изучение действия антибиотиков на биопленки бактерий, вызывающих патологические процессы различной локализации.
Яндекс.Директ
Последние новости Украины!
Последние новости Украины. Комментарии и мнения экспертов. Узнайте здесь!
politrussia.comАдрес и телефон
Новороссия новости, сайт Вестила
Узнайте последние события в Новороссии, читайте на сайте vesti.la
vesti.la

Считается доказанным, что биопленка повышает вирулентность и патогенность всех возбудителей. Подсчитано, что частота инфекций, обусловленных биопленкой, особенно в развитых странах мира, составляет 65%-80% [17]. Многие патогены, такие как E. coli, Salmonella, Yersinia enterocolitica, Listeria, Campylobacter, существуют в форме биопленки на поверхности пищевых продуктов или на поверхности оборудования для их хранения. Кроме того, патогенные бактерии, такие как Staphylococcus aureus, Enterococcus, Streptococcus, E. coli, Klebsiella, Pseudomonas, как правило, растут на катетерах, искусственных суставах, механических клапанах сердца и т.д. [17, 18, 19]. Активность биопленки была зарегистрирована при таких инфекциях, как кариес зубов, кистозный фиброз, инфекции мочевых путей, эндокардит, отит, глазные и раневые инфекции. Продемонстрирована способность H. pylori формировать биопленку на слизистой оболочке желудка и, таким образом, оптимальная антихеликобактерная терапия — это эрадикация биопленки H. Pylori [9, 17, 21, 25]. Возрастающая антибиотикорезис-тентность и развитие бактериальных биопленок являются основными проблемами в лечении инфекций мочевых путей.

В настоящее время идет интенсивное изучение причин такой удивительной устойчивости к антибиотикам у бактерий биопленок. Установлено, что в основе повышенной выживаемости лежат свойства клеток и внеклеточного матрикса. Матрикс биопленки может связывать или не пропускать, и/или инактивировать антибиотики [3, 11, 13]. Устойчивость, обусловленную свойствами клеток биопленки, объясняют уменьшением их свободной поверхности за счет контактов друг с другом и формированием особых бактерий, получивших название персистеров. Персистеры в силу дифференцировки временно становятся устойчивы практически ко всем антибактериальным препаратам [6, 15, 16]. Основными же механизмами повышения устойчивости бактерий к антибиотикам в биопленках являются: 1. ограничение проникновения антибиотиков через биопленки; 2. ограничение питания и измененная микросреда в биопленке приводят к уменьшению скорости деления бактерий, вследствие чего остается меньше мишеней для действия антибиотиков;
3. адаптивные реакции; 4. генная изменчивость у персистирующих в биопленке бактерий.

Исходя из накопившихся данных, следует, что антибиотики по действию на бактерии биопленок разделяются на два типа. К первому относят антибиотики, проникающие в биопленки и угнетающие или убивающие образующие их микроорганизмы. Второй тип — антибиотики, практически не проникающие в биопленки, но эффективно препятствующие их расселению за счет мигрирующих бактерий [2, 11, 16]. Таким образом, некоторые антибиотики не проникают в биопленки и не уничтожают существующие сообщества, а только препятствуют увеличению их числа и распространению в организме человека. В связи с этим в последние годы началось изучение способности антибиотиков проникать в биопленки различных микробов. Установлено, что в биопленки Klebsiella pneumoniae плохо проникает ампициллин, а в сообщества Enterococcus faecalis — ампициллин, ко-тримаксозол и ванкомицин [8, 14, 15]. В биопленки ряда микробов плохо проникает широко используемый амоксициллин [16].
К числу антибиотиков, хорошо проникающих через липиды клеток, относятся фторхинолоны. Эта группа антимикробных препаратов способна действовать на основные возбудители урологических заболеваний, в достаточной концентрации проникает в очаг инфекции [9]. Имеющийся опыт использования антибиотиков свидетельствует, что с инфекционным процессом, прежде всего с его клиническими проявлениями, можно справиться с помощью антибиотиков, как проникающих, так и не проникающих в биопленки. Однако разница между ними существует, и она достаточно существенна. Показано, что различия антибиотиков, проникающих и непроникающих в биопленки, могут проявляться в отдаленных результатах лечения. Использование антибиотиков, плохо проникающих в биопленку, очень быстро приводит к формированию и отбору устойчивых штаммов. Кроме того, при этом чаще возникают рецидивы и формируются

очаги хронических процессов.

Таким образом, сейчас очевидно, что повышение эффективности лечения невозможно без тестирования антибиотиков на способность проникать в биопленки, действовать на уже сформированные сообщества и угнетать их образование и расселение. Способность проникать в биопленки и действовать на расположенные внутри и расселяющиеся бактерии является крайне важным свойством антибиотиков, пока, к сожалению, недостаточно исследованным и малоизвестным практическим врачам. Изучена возможность некоторых препаратов, например, кларитромицина, ингибировать образование гликокаликса и его способность в комбинации с цефалоспорином I поколения или ванкомицином препятствовать образованию биопленок на титановом медицинском оборудовании: структура биопленки изменяется, уменьшается количество альгината, гексозы, истончается гликокаликс, тем самым повышается проникновение антимикробного препарата.

Проводятся интенсивные исследования по изучению механизмов образования биопленки. Доктор Стэнли-Wall исследовала гены и белки, необходимые для образования биопленки Bacillus subtilis. Она показала, в частности, что возможность образования биопленки определяет белок под названием DegU [25]. Показано, что SasG белок, располагающийся на поверхности Staphylococcus aureus, вместе с ионами цинка, необходим для построения биопленки [27]. РНК связывающий белок CsrA Escherichia coliK-12 может быть, в зависимости от условий культивирования, как стимулятором, так и разрушителем биопленки путем воздействия на внутриклеточный биосинтез гликогена. Белок CsgD E.Coli активирует рост фимбрий и синтез внеклеточных полисахаридов, способствуя формированию биопленки [28].

Исследователи из Института Пастера в 2010 г. впервые показали, что некоторые вирусы, в частности HTLV-1 ретровирус, способны образовывать комплексы, похожие на бактериальные биопленки. Благодаря биопленке вирусы защищены от иммунной системы, что позволяет им распространяться от клетки к клетке. Изучение образования вирусных биопленок может определить новую терапевтическую стратегию, которая будет ориентирована не только на вирус, а на вирусную биопленку [26].

Представления о биопленках, подтвержденные с помощью современных методов визуализации, изменили взгляды на инфекционные заболевания. Все новые данные свидетельствуют о том, что хронические инфекции принципиально отличаются от острых образованием биопленок, а фагоциты макроорганизма неспособны поглощать биопленки в отличие от отдельных бактериальных клеток [22]. Существование биопленок при хронических инфекциях требует совершенно новых подходов к их диагностике и лечению. Повышает устойчивость биопленок к вредным факторам также присущее им генетическое и фенотипическое разнообразие, которое позволяет им переносить большинство терапевтических воздействий [23]. Кроме того, традиционные бактериологические методы не выявляют большинство бактерий, участвующих в инфекционном процессе [24]. Новейшие молекулярные, геномные, транскрипционные и протеомные методы позволили определить, что при выделении чистой культуры определяется лишь около 1% клеток патогенного микробиоценоза. В результате лечение нацелено лишь на 1-2 вида бактерий из множества штаммов, присутствующих в составе биопленки (в том числе, возможно, и грибов) [23, 24]. Сейчас не вызывает сомнений необходимость пересмотра концепции патогенеза различных хронических инфекций, внедрив в нее имеющиеся данные о биопленках, что требует использования новых методов диагностики и лечения. Идентифицировать микроорганизмы в составе биопленок позволяют современные молекулярные методы — электрофорез в геле и высокоэффективная жидкостная хроматография с флюоресцентной гибридизацией in situ, эпифлюоресцентная микроскопия, сканирующая электронная микроскопия, конфокальная лазерная сканирующая микроскопия (CLSM), ПЦР с обратной транскриптазой и другие исследования [7].

Терапевтическое воздействие на биопленки может быть направлено на механизмы первоначальной адгезии бактерий к поверхности, блокирование синтеза или разрушение полимерного матрикса, нарушение межклеточного обмена информацией, а также оно может сочетаться с собственно бактерицидными агентами. Подобное лечение, действующее на структуру или функции биопленок, может оказаться более эффективным, чем стандартная антибактериальная терапия [4]. Таким образом, лечение хронических инфекций в настоящее время уже не может основываться на традиционной концепции микробиологии. Новые представления о биопленках требуют изменения подходов к диагностике и лечению инфекций в самых различных областях медицины.



С.В. Мальцев, Г.Ш. Мансурова

Казанская государственная медицинская академия
Мальцев Станислав Викторович — доктор медицинских наук, профессор, заведующий кафедрой педиатрии с курсом поликлинической педиатрии





Литература:

1. Watnick P., Kolter R., Biofilm, city of microbes. J Bacteriol 2000; 182: 2675-9.

2. Тец В.В. Бактериальные сообщества. В кн.: Клеточные сообщества / под ред. В. Теца. —Санкт-Петербург: Изд-во СПбГМУ, 1998. — С. 15-73.

3. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284: 1318-22.

4. Costerton W., Veeh R, Shirtliff M et al. The application of biofilm science to the study and control of chronic bacterial infections. Clin. Invest 2003; 112:1466-77.

5. O’Toolе G.A., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Ann Rev Microbiol 2000; 54: 49-79.

6. Tetz V.V. The effect of antimicrobial agents and mutagen on bacterial cells in colonies. Med Microbiol. Lett., 1996; 5:426-36.

7. Tetz V.V. et al. Extracellular phospholipids of isolated bacterial communities. Biofilms, 2004; 1:149-55.

8. Sponza D.T. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions. Enzyme Microb Technol, 2003; 32: 375-85.

9. В.В. Тец, Н.К. Артеменко. Биопленки возбудителей уроинфекций и использование фторхинолонов. Consilium Medicum. — Урология, 2008. — Т. 10. — № 4.

10. El-Azizi M. et al. //Ann. Clin. Microbiol. Antimicrob. 2005. V. 4. P. 2.

11. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2003; 2: 114-22.

12. Campanac C., Pineau L., Payard A., Baziard-Mouysset G., Roques C. Interactions between Biocide Cationic Agents and Bacterial Biofilms. Antimicrob Agents, Chemother 2002; 46: 1469-74.

13. Chambless J.D., Hunt S.M., Philip S.S. A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials Appl. and Environmental Microbiology, 2006; 72: 2005-13.

14. Harrison J.J., Ceri H., Roper N.J., Badry E.A. et al. Persister Cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology. 2005; 151: 3181-95.

15. Shah K.D., Spoering A.N., Lewis K.K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 2004; 186: 8172-80.

16. Sandoe J. et al. Measurement of ampicillin, vancomycin, linezolid and gentamicin activity against enterococcal biofilms, Journal of Antimicrobial Chemotherapy, 2006; 57: 767-70.

17. Hancock V., Ferrieres L., Klemm P. Biofilm formation by asymptomatic and virulent urinary tract infectious Escherichia coli strains. FEMS Immunol. Med. Microbiol. 2007; 51: 212-9.

18. Tenke P., Kovacs B., Jackel M., Nagy E. The role of biofilm infection in urology. World Journal of Urology, 2006; 24: 13-20.

19. Trautner B.W., Darouiche R.O. Role of biofilm in catheter-associated urinary tract infection. American Journal of Infection Control 2004; 32: 177-83.

20. Ryder M.A. Catheter-Related Infections: It’s All About Biofilm. Topics in Advanced Practice Nursing eJournal. 2005; 5 (3).

21. Hunt S.M. et al. Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol, 2004; 70: 7418-25.

22. Wolcott R.D., Ehrlich G.D. // JAMA. 2008. V. 299. P. 2682.

23. Ehrlich G.D. et al. // Clin. Orthop. Relat. Res. 2005. V. 437. P. 20.

24. Dowd S.E. et al. // BMC Microbiol. 2008. V. 8. P. 43.

25. Genes That Make Bacteria Make Up Their Minds, ScienceDaily, Apr., 6, 2009.

26. Biofilms: Discovery of a New Mechanism of Virus Propagation, ScienceDaily, 2010, Feb., 8.

27. Joan A. Geoghegan et al. Role of Surface Protein SasG in Biofilm Formation by Staphylococcus aureus. Journal of Bacteriology, Nov., 2010, V. 192, No. 21, P. 5663-5673.

28. Debra W. Jackson et al. Biofilm Formation and Dispersal under the Influence of the Global Regulator CsrA of Escherichia coli, Journal of Bacteriology, Jan., 2002, V. 184, No.1, P. 290-301.

Для просмотра ссылок Вы должны быть авторизованы на форуме.
Все очень просто! По Гиппократу - пища это лекарство. Но не можем же мы постоянно принимать лекарства!
"Есть или не есть и что есть из того, что есть?"
Если ты поднялся на вершину горы и тебе некуда идти - иди дальше!

Нажимайте на значок пальца в верхнем правом углу и спи крепко.

Аватар пользователя
Ansaraides
Бывалый
Сообщений: 3446
Зарегистрирован: 09 июл 2013, 08:07
Награды: 8
Откуда: Город Святой Марии
Пол: Мужской
:
Замок
Благодарил (а): 1098 раза
Поблагодарили: 2203 раза

Re: Свойства бактерий

Сообщение Ansaraides » 22 сен 2016, 12:46

Структура бактериальной клетки
Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядерного аппарата, называемого нуклеоидом. Имеются другие структуры: мезосома, хроматофоры, тилакоиды, вакуоли, включения полисахаридов, жировые капельки, капсула (микрокапсула, слизь), жгутики, пили. Некоторые бактерии способны образовывать споры.
Структуру и морфологию бактерий изучают с помощью различных методов микроскопии: световой, фазово-контрастной, интерференционной, темнопольной, люминесцентной и электронной.
strbkl[1].gif
strbkl[1].gif (18.78 KiB) 246 просмотра


Обозначения:

1-гранулы поли-β-оксимасляной кислоты;
2-жировые капельки;
3-включения серы;
4-трубчатые тилакоиды;
5-пластинчатые тилакоиды;
6-пузырьки;
7-хроматофоры;
8-нуклеоид;
9-рибосомы;
10-цитоплазма;
11-клеточная стенка;
12-цитоплазматическая мембрана;
13-мезосома;
14-вакуоли;
15ламелярные структуры;
16гранулы полисахарида;
17гранулы полифосфата.

Клеточная стенка

В клеточной стенки грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40—90% массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos — стенка).
В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид (ЛПС). Липополисахарид наружной мембраны состоит из трех фрагментов: липида А - консервативной структуры, практически одинаковой у грамотрицательных бактерий; ядра, или стержневой, коровой части (лат. core — ядро), относительно консервативной олигосахаридной структуры (наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота); высоковариабельнои О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями (О-антиген). Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы.
При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима,
пенициллина, защитных факторов организма образуются клетки с измененной (часто шаровидной) формой: протопласты — бактерии, полностью лишенные клеточной стенки; сферопласты - бактерии с частично сохранившейся клеточной стенкой. Бактерии сферо- или протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами.
Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку.
Между наружной и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, бета-лактомазы) и компоненты транспортных систем.

Цитоплазматическая мембрана


Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым - промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты — впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.

Цитоплазма


Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул — рибосом, ответственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Рибосомные РНК (рРНК) - консервативные элементы бактерий («молекулярные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, а 23S рРНК - в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.
В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они являются запасными веществами для питания и энергетических потребностей бактерий. Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки.

Нуклеоид


Нуклеоид — эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.
Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности - плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

Капсула, микрокапсула, слизь

Капсула - слизистая структура толщиной более 0,2мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).
Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слиэь - мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде.
Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза
экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

Жгутики

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары дисков - у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка - флагеллина (от flagellum - жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Пили


Пили (фимбрии, ворсинки) - нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны - несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми "мужскими" клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми "мужскими" сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

Споры

Споры - своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.
Все очень просто! По Гиппократу - пища это лекарство. Но не можем же мы постоянно принимать лекарства!
"Есть или не есть и что есть из того, что есть?"
Если ты поднялся на вершину горы и тебе некуда идти - иди дальше!

Нажимайте на значок пальца в верхнем правом углу и спи крепко.

Аватар пользователя
Ansaraides
Бывалый
Сообщений: 3446
Зарегистрирован: 09 июл 2013, 08:07
Награды: 8
Откуда: Город Святой Марии
Пол: Мужской
:
Замок
Благодарил (а): 1098 раза
Поблагодарили: 2203 раза

Re: Свойства бактерий

Сообщение Ansaraides » 28 окт 2016, 04:12

Создана жвачка с полезными бактериями

Видимо, как и йогурты, не всякие жвачки одинаково полезны .

Учёные из германской компании BASF создали жевательную резинку, содержащую дружественные бактерии, которые помогают предотвратить разрушение зубов.

Бактерии рода Lactobacillus, обычно присутствующие в так называемых живых йогуртах, здесь мешают вредным бактериям нападать на зубы. Добавленные в резинку микроорганизмы снижают во рту концентрацию бактерий Streptococcus mutans, преобразующих сахар в кислоту, разрушающую эмаль.

Специалисты BASF говорят, что новая жвачка уже была успешно проверена на множестве людей. А сейчас компания работает над аналогичными по своим защитным свойствам зубной пастой и жидкостью для полоскания рта. Они также будут содержать живые лактобактерии. И жвачка, и паста, и жидкость должны появиться на рынке в следующем году.
Все очень просто! По Гиппократу - пища это лекарство. Но не можем же мы постоянно принимать лекарства!
"Есть или не есть и что есть из того, что есть?"
Если ты поднялся на вершину горы и тебе некуда идти - иди дальше!

Нажимайте на значок пальца в верхнем правом углу и спи крепко.

Аватар пользователя
Ansaraides
Бывалый
Сообщений: 3446
Зарегистрирован: 09 июл 2013, 08:07
Награды: 8
Откуда: Город Святой Марии
Пол: Мужской
:
Замок
Благодарил (а): 1098 раза
Поблагодарили: 2203 раза

Re: Свойства бактерий

Сообщение Ansaraides » 09 ноя 2016, 08:03

Скоро в продаже: ГМО-бактерии в пилюлях

2f56795d4d9355a57e3c271063db5372.jpg

Кишечная палочка (E. coli). Иллюстрация: Chris Bickel / Журнал Science

Американский стартап Synlogic, основанный совместно с профессорами Массачусетского технологического института, готов вывести на рынок новый класс медицинских препаратов. Его называют «синтетическими бактериями» и «живой терапией». Капсулы для прерорального применения содержат колонию живых бактерий. Попадая в кишечник они начинают полезную деятельность. Задача — устранить определённые метаболические аномалии, которые являются следствием заболеваний и редких генетических нарушений.

В организме человека постоянно живут триллионы разнообразных бактерий, которые находятся в симбиозе с нами. Количество микробов более чем на порядок превышает количество клеток человеческого тела. Общая масса микрофлоры кишечника — от 1 до 3 кг. Без этих симбионтов мы просто не выживем.

Все они в совокупности называются микрофлорой или микробиотой человека. Микрофлора кишечника человека состоит из более чем 500 видов, большинство из которых — бактерии, например, кишечная палочка. Другие представители микрофлоры — микроскопические грибы, в частности, дрожжи, а также простейшие. Один только кубический сантиметр человеческой слюны содержит от десяти миллионов до миллиарда бактерий.

ee487327620f475ba3d4564b9f116b39.jpg


Изучение микрофлоры кишечника — одно из перспективных направлений современной науки. В последние годы научные исследования показали, что микробиота представляет собой сложнейшую экосистему, которая оказывает ключевое влияние на здоровье человека, в том числе на его физическое и психическое состояние. Человека можно рассматривать как «сверхорганизм». Сообщество микробов управляет человеческим телом, программируя обмен веществ в теле с помощью ферментов, которые кодируются геномом бактерий.

Учёные вынуждены признать, что они не в состоянии традиционными методами дать полную качественную и количественную характеристику микробиоценозов организма человека, а тем более анализировать популяционных взаимодействий микроорганизмов, микробных «сигнальных систем» и определить прочие характеристики микрофлоры. Это связано с практической невозможностью культивирования более чем 50% представителей микрофлоры человека.

Для анализа микробиоты разработаны принципиально новые направления и методы микробиологии, прежде всего молекулярно-генетические методы с использованием генетических платформ для метагеномных исследований.

Стартап Synlogic работает именно в этом инновационном направлении, изучая микрофлору и пытаясь на неё как-то повлиять, чтобы косвенно скорректировать человеческий метаболизм. Например, синтетические бактерии могут устранять в организме излишки аммиака. Первые клинические испытания экспериментального препарата Synlogic назначены на начало 2017 года.

Синтетическая бактерия для устранения излишком аммиака — только первый пробный шар в новом классе программируемых бактерий, которые предназначены для лечения различных болезней. Научные исследования в этой области идут более 15 лет, а бактерии Synlogic в капсулах — один из первых конкретных медицинских препаратов, которые могут быть одобрены для медицинского применения. В данный момент на рассмотрении Управления по контролю за продуктами и лекарствами США на ходится от 8 до 10 генномодифицированных микроорганизмов.

Основная идея в том, чтобы генетически подкорректировать бактерию E. coli, обычную кишечную палочку, которая в большом количестве присутствует в организме. Генетически модифицированная бактерия обладает особым аппетитом к вредному аммиаку, который постоянно образуется во всех тканях и органах организма, а особенно активно — в печени, кишечнике, мышцах и нервных тканях. Это чрезвычайно токсичное соединение, которое необходимо связать (обезвредить) и вывести из организма.

Обычно аммиак выводится через мочу, но организм некоторых людей не способен связывать и выводить его достаточно быстро. Из-за этого в организме накаливается достаточно высокий и токсичный уровень аммиака. Вплоть до того, что человек становится раздражительным, впадает в делирий, а у новорожденных такое нарушение метаболизма может вызвать даже смерть. Синтетическая кишечная бактерия помогает преобразовать аммиак в безвредный аргинин.

По рецептуре Synlogic, человеку для нормализации обмена аммиака в организме будет достаточно достаточно принимать ежедневно по одной капсуле препарата, которая содержит 100 млрд бактерий генетически модифицированной кишечной палочки.

Биотехнологический стартап уже получил около $70 млн венчурного финансирования. Независимые специалисты считают, что это очень перспективное направление фармакологии. Например, другой стартап Ernest Pharmaceuticals экспериментирует с лечением злокачественных опухолей с помощью генномодифицированной сальмонеллы. Это специфическая бактерия, которая имеет свойство скапливаться в раковых опухолях. Учёные пытаются использовать это свойство сальмонеллы. Сконструированный ими организм должен выделять противораковое лекарство, когда попадёт в клетки злокачественной опухоли.

Клинические испытания должны проверить, что ГМО-бактерии кишечной палочки безвредны для организма и не обмениваются генами с нормальными бактериями человеческой микрофлоры. Инженеры сделали так, что для деления синтетического организма требуется наличие специфического вещества — тимидина, которого очень мало в человеческом кишечнике. Это гарантирует, что ГМО-бактерия не оставит потомства.

Возможно, спустя несколько лет на прилавках аптек мы увидим немало различных бактерий с генными модификациями. Вообще, такие ГМО применяют не только в медицине. Например, недавно сообщалось о разработке микрооранизма, который синтезирует морфий из глюкозы, так что будущее обещает быть интересным.

По оценкам специалистов, американский фармацевтический рынок синтетических бактерий — лекарственных пилюль и йогуртов с живыми бактериями — составляет $3,5 млрд.

Для просмотра ссылок Вы должны быть авторизованы на форуме.
Все очень просто! По Гиппократу - пища это лекарство. Но не можем же мы постоянно принимать лекарства!
"Есть или не есть и что есть из того, что есть?"
Если ты поднялся на вершину горы и тебе некуда идти - иди дальше!

Нажимайте на значок пальца в верхнем правом углу и спи крепко.


  • Похожие темы
    Ответов
    Просмотров
    Последнее сообщение

Вернуться в «Пища как регулятор состояния организма»

Кто сейчас на форуме

Количество пользователей, которые сейчас просматривают этот форум: нет зарегистрированных пользователей и 0 гостей